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ABSTRACT
Computationally efficient source location solutions from TOAs or
TDOAs require the squaring of the measurements before optimiza-
tion. The squaring operation changes the characteristics of the mea-
surements and causes degradation in the localization accuracy, un-
less proper weightings are applied when forming the cost function
for minimization. The previously developed weighting values are
useful for measurements with accurate sensor positions only. This
paper extends the study and derives the weightings when the sensor
position uncertainties are present such as in sensor networks. The
resultant cost functions for TOA and TDOA positionings are ana-
lyzed and the performance accuracy is shown to attain the CRLB
asymptotically under Gaussian noise. Simulations validate the per-
formance of the new cost functions and the theoretical investigations.

Index Terms— Source localization, TOA, TDOA, sensor posi-
tion errors, efficient solution

1. INTRODUCTION
Source localization is a fundamental application in GPS, radar,
sonar, mobile communication and sensor networks [1–16]. Most
common localization approaches are ranged-based through the use
of time of arrival (TOA), time difference of arrival (TDOA) or the
received signal strength (RSS) from the source to a number of sen-
sors at known positions. In practice, the sensor positions are not
known exactly, such as in a sensor network in which the node posi-
tions are estimated by anchors. Sensor position errors degrade the
localization performance considerably [17, 18] and their statistics
should be taken into consideration in order to reach better perfor-
mance [19, 20]. For example, [19] addressed the sensor position
uncertainty by jointly estimating the source and sensor positions
through an iterative implementation of the maximum likelihood
estimator (MLE). [20] handled the situation by joint estimation as
well using semi-definite programming.

Obtaining the source location from the range-based measure-
ments is not an easy task, since the measurement equation is non-
linear with respect to the unknowns. Solving the source position di-
rectly from the measurements, such as by the MLE, requires an iter-
ative solution whose performance depends highly on initializations.
When the sensor positions have uncertainties, the sensor positions
become nuisance variables and they need to be solved jointly with
the source positions. The number of unknowns becomes large and
it presents challenges to an iterative solution in reaching the global
minimum and in maintaining the computational efficiency. This mo-
tivates the development of algebraic closed-form solutions for the
localization problem and it has been an active research area.

Most of the closed-form or exact localization solutions in liter-
ature are based on squaring the range-based measurements. In par-

ticular, [21] has established an exact and computationally efficient
solution for TOA localization by applying the generalized trust re-
gion subproblem (GTRS) [22] technique on the squared range mea-
surements. The squaring operation, however, changes the charac-
teristics of the measurements and the resulting solution is subopti-
mum [23]. Indeed, under some unfavorable geometries, the location
error ratio of the squared measurement solution to that of the MLE
is unbounded [24]. Fortunately, [25] has shown that by introduc-
ing suitable weightings to the squared measurements when form-
ing the cost function for minimization, we are able to recover the
optimum performance accuracy in reaching the Cramér-Rao Lower
Bound (CRLB). The weightings do not alter the structure for ob-
taining computationally efficient solution and the previously devel-
oped solution methods with squared measurements remain applica-
ble. The work in [25] only considers measurement noise only and
is applicable when the sensor positions are accurate. The effect of
sensor position errors on the localization accuracy is not negligible
even if the number of sensors is large [18] This paper extends [25]
and derives the new weightings for the squared TOA and TDOA
measurements when sensor position errors are present.

The benefits for this extension are threefold. First, a typical
algorithm such as the MLE needs to jointly estimate the source and
sensor positions, while the proposed new cost function estimates
the source position only. Obviously, the dimension reduction in
optimization can significantly reduce the computational complexity.
Second, the new cost functions have the same structure as those
in [21], thereby existing algebraic or exact solutions to the squared
measurements can still be used without requiring new optimization
method. Third, the solutions of the new cost functions achieve
asymptotically the CRLB performance under Gaussian noise as we
will show in the theoretical analysis and simulations.

The rest of the paper is organized as follows. Section 2 intro-
duces the scenarios for TOA and TDOA localizations and provides
the CRLBs of the source location estimate. Section 3 proposes the
new cost function for TOA positioning and analyzes its solution ac-
curacy. Section 4 is for the new cost function of TDOA positioning
and its analysis. Section 5 gives the simulation results to verify the
performance of the proposed new cost functions and support the the-
oretical studies. Section 6 concludes the paper. We shall use TOA
and range, as well as TDOA and range difference interchangeably
because they are differed by a scaling factor.

2. LOCALIZATION SCENARIO AND CRLB
2.1. Localization scenario

Let us begin the source localization problem in 3D by having M
sensors to collect the range-based measurements from a source as
shown in Fig. 1. The source position to be estimated is repre-
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Fig. 1. Localization scenario. Open circles are the true sensor posi-
tions and closed circles are the available sensor positions.

sented by uo = [xo yo zo]T . The sensor positions during acquisi-
tion are soi = [xo

i y
o
i z

o
i ]

T , i = 1, 2, . . . , M . They are not known
to a location estimator and we only have the erroneous positions
si = soi + nsi, where nsi is the position error of sensor i. We
collect the sensor positions in a vector as s = so + ns, where

so =
[
soT1 soT2 · · · soTM

]T
and ns =

[
nT
s1 n

T
s2 · · · nT

sM

]T
. In this

study, we consider ns is zero-mean Gaussian with known covariance
Qs. The localization problem has unknown parameters [uoT soT ]T .

In this paper, we assume line-of-sight (LOS) propagation and
sufficient SNR such that the acquired TOAs and TDOAs can well
be modelled by Gaussian distribution with covariance matrix gov-
erned by their CRLBs. The localization accuracy is indirectly re-
lated to the received waveforms, signal and noise bandwidths, SNR
and observation time through the covariance matrices of the TOAs
and TDOAs [10, 26–29].

For range (TOA) localization, the measurement vector is r =
ro + nr where ro = [ro1 r

o
2 · · · roM ]T , roi = ‖uo − soi ‖ and nr =

[n1 n2 · · · nM ]T is the measurement noise vector that is zero-mean
Gaussian with covariance matrix Q.

For range difference (TDOA) localization, the measurement
vector is rd = rod + nd where rod = [ro21 r

o
31 · · · roM1]

T
and

roi1 = roi − ro1, i = 2, 3, . . . , M . The noise vector nd =
[n21 n31 · · · nM1]

T
is zero-mean Gaussian with covariance ma-

trix Qd. In both range and range difference cases, the measurement
noise and sensor position noise are assumed independent for ease of
illustration. The collection of the measurement and sensor position
noise is denoted by n, which is either [nT

r ,n
T
s ]

T or [nT
d ,n

T
s ]

T .

2.2. CRLB
In the asymptotic region in which the estimation bias is small com-
pared to variance, the localization performance can be characterized
by the CRLB. Utilizing the CRLB analysis in [17] and taking fur-
ther simplification, the CRLB for a source position estimate in range
localization is

CRLB(uo) =
[
Γ(Q+ATQsA)−1ΓT

]−1

, (1)

where Γ = [ρ1 ρ2 · · · ρM ], A = −blkdiag{ρ1, ρ2, . . . , ρM},
and blkdiag{�} is the block diagonal matrix notation. The vector ρi

is ρi = (uo − soi )/‖uo − soi ‖, which is a unit vector pointing from
sensor i to the source.

For range difference localization, we have

CRLB(uo) =
[
Γd(Qd +AT

d QsAd)
−1ΓT

d

]−1

(2)

where Γd = [ρ21 ρ31 · · · ρM1], ρi1 = ρi − ρ1,

Ad =

[
ρ11

T

−blkdiag{ρ2, ρ3, . . . , ρM}
]
,

and 1 is a length (M -1) vector of unity.

3. SQUARED RANGE COST FUNCTION AND ANALYSIS

3.1. New SR-WLS cost function

We shall define the squared range weighted least-squares (SR-WLS)
cost function to obtain the source location estimate as

fSR-WLS(u) =

M∑
i,j=1

w̃ij(r
2
i − ‖u− si‖2)(r2j − ‖u− sj‖2). (3)

Note that the unknown of the cost function is u only and s is kept as
the noisy sensor positions. The objective is to find the weights w̃ij

to improve as much accuracy as possible since the cost function is
constructed with the noisy sensor positions.

The residual squared range error at the true source location is

ei = r2i − ‖uo − si‖2 = (roi + ni)
2 − ‖uo − soi − nsi‖2

� 2roi ni + 2(uo − soi )
Tnsi = 2roi

(
ni + ρT

i nsi

)
. (4)

The approximation comes from ignoring the second order noise
terms and we have used ρi to represent (uo − soi )/r

o
i . According to

the WLS estimation theory [30], the weights should be the elements
of W = C−1, where C is the correlation matrix whose (i, j) − th
element is E[eiej ]. Defining B as B = 2diag{ro1, ro2, . . . , roM},

W = [B(Q+ATQsA)B]−1
(5)

where A is defined below (1). W is not known since it depends
on the true range values and the true source and sensor positions.
Let us construct the noisy version of B from the measurements as
B̃ = 2diag{r1, r2, . . . , rM} and that of A as Ã by replacing ρi as
ρ̃i = (ũ − si)/ri, where ũ is some estimate of uo. We choose the
weights w̃ij in (3) as the elements of

W̃ = [B̃(Q+ ÃTQsÃ)B̃]−1 . (6)

We shall show from the first order analysis that although we use
the noisy measurement values to form the weights, the minimum
of the cost function (3) is able to reach the CRLB accuracy in the
asymptotic region.

3.2. MSE analysis

We shall evaluate the mean-square error (MSE) matrix M of the
minimum solution of (3). Using the first order analysis, the MSE
matrix of the solution from a smooth cost function f(u) is [25]:

M = F
′′−1

E
[
f ′f ′T

]
F

′′−1
(7)

where f ′ = ∂f(u)/∂u|u=uo , and F
′′

is the component of F′′ =

∂2f(u)/∂u∂uT
∣∣
u=uo by setting the noise to zero.

We shall use little-o notation o(�) to represent the noise com-
ponent in the following analysis, where a(x) ∈ o(b(x)) means that
limx→0 a(x)/b(x) = 0. It is reasonable to assume the source lo-

cation ũ used in forming W̃ is different from the true source loca-
tion by random noise. Hence the weights in (3) can be expressed as
w̃ij = wij + o(1), where wij is the (i, j)− th element of (5).

The first derivative from (3) is,

∂fSR-WLS(u)

∂u
= −4

M∑
i,j=1

w̃ij

(
r2i − ‖u− si‖2

)
(u− sj) . (8)
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Expressing w̃ij in terms of wij and substituting ri = roi + ni

and si = soi + nsi, we arrive at after some algebraic manipulations,

f ′SR-WLS = −8

M∑
i,j=1

roiwijr
o
j (ni + ρT

i nsi)ρj + o (‖n‖)1

= −2ΓBWB(n−ATns) + o (‖n‖)1 , (9)

where 1 represents a 3× 1 vector of unity. Hence using (5),

E[f ′SR-WLSf
′T
SR-WLS] � 4ΓBWB(Q+ATQsA)BWBΓT

= 4Γ(Q+ATQsA)−1ΓT . (10)

For the second derivative,

∂2fSR-WLS(u)

∂u∂uT
= −4

M∑
i,j=1

w̃ij [−2(u− si)(u− sj)
T

+(r2i − ‖u− si‖2)I] (11)

where I is an identity matrix. Again, expressing the noisy qualities
in terms of the true values yields

F′′
SR-WLS = 8

M∑
i,j=1

roiwijr
o
jρiρ

T
j + o(1)11T

= 2ΓBWBΓT + o(1)11T . (12)

Its constant component excluding noise is, after using (5),

F
′′
SR-WLS = 2Γ(Q+ATQsA)−1ΓT . (13)

Utilizing the MSE formula (7) gives immediately

MSR-WLS =
[
Γ(Q+ATQsA)−1ΓT

]−1

, (14)

which is exactly the CRLB in (1) for range localization in the pres-
ence of sensor position errors. Thus the solution of the new SR-WLS
cost function is asymptotically efficient.

4. SQUARED RANGE DIFFERENCE COST FUNCTION
AND ANALYSIS

4.1. New SRD-WLS cost function
Let pi = (ri1 + ‖u− s1‖)2 − ‖u − si‖2. The new squared range
difference weighted least-squares (SRD-WLS) cost function is

fSRD-WLS(u) =

M∑
i,j=2

w̃dijpipj , (15)

where the unknown is considered to be u only and w̃dij is the
weights to be found to improve performance.

Since ‖uo − s1‖ � ro1 −ρT
1 ns1 by the Taylor series expansion,

the residual error at the true source location is

(ri1 + ‖uo − s1‖)2 − ‖uo − si‖2
� 2roi (ni1 − ρT

1 ns1 + ρT
i nsi) (16)

after putting ri1 = roi1 + ni1 and si = soi + nsi. Using the same
argument as for the range case, the ideal weightings are the elements
of

Wd = [Bd(Qd +AT
d QsAd)Bd]

−1
(17)

where Bd = 2diag{ro2, ro3, . . . , roM} and Ad is defined below (2).
Let r̃1 = ‖ũ−s1‖ and ũ is an initial source location estimate. Also,
let r̃i = ri1+r̃1, i = 2, 3, . . . , M and ρ̃i = (ũ− si)/r̃i. We shall

define B̃d = 2diag{r̃2, r̃3, . . . , r̃M} and Ãd as Ad by replacing
ρi with ρ̃i. The weights w̃dij in (15) are the elements of

W̃d = [B̃d(Qd + ÃT
d QsÃd)B̃d]

−1 . (18)

4.2. MSE analysis

Following the same procedure as in the range localization case, we
have for the first derivative,

f ′SRD-WLS = −2ΓdBdWdBd(nd −AT
d ns) + o (‖n‖)1 (19)

and hence after using (17)

E[f ′SRD-WLSf
′T
SRD-WLS] � 4Γd(Qd +AT

d QsAd)
−1ΓT

d . (20)

For the second derivative,

F
′′
SRD-WLS = 2Γd(Qd +AT

d QsAd)
−1ΓT

d . (21)

Putting them into (7) yields

MSRD-WLS =
[
Γd(Qd +AT

d QsAd)
−1ΓT

d

]−1

. (22)

MSRD-WLS is the CRLB expression (2) for range difference lo-
calization under sensor position errors. As a result, the solution of
the new SRD-WLS cost function is also asymptotically efficient.

Generating the new weights w̃ij or w̃dij requires a coarse esti-
mate of the source location ũ. It can be easily generated by using
a localization algorithm, e.g. from [25], by pretending the sensor
position errors are absent.

5. SIMULATIONS

In this section, we shall validate the asymptotic efficient perfor-
mance of the SR-WLS and SRD-WLS cost functions that address
sensor position errors, using one specific geometry and 200 random
geometries. The specific localization geometry is taken from [17],
where the true locations of the sensors are shown in Table 1 and the
source is at uo = [700, 650, 550]T . The sensor position covariance
is Qs = σ2

sdiag{1, 2, 10, 40, 20, 3}⊗ I3, I3 is an identity matrix of
size 3 and ⊗ is the Kronecker product. For the random geometries,
we use M = 10 sensors. The sensors and the source are placed with
independent, identically distributed (IID) uniform distribution in
each coordinate within a cube of length 1000. To avoid degenerate
geometry that yields poor performance, we maintain a minimum
distance of 25 between the source and a sensor. The sensor position
covariance is Qs = σ2

sdiag{σ2
1 , σ

2
2 , . . . , σ

2
M} ⊗ I3, where σi’s are

created randomly with IID uniform distributions and are normalized
so that

∑M
1 σ2

i = 1. A new Qs is used for each random geometry.

Table 1: The true positions of sensors

sensor no. i 1 2 3 4 5 6

xo
i 300 400 300 350 -100 200

yo
i 100 150 500 200 -100 -300
zoi 150 100 200 100 -100 -200

The GTRS solution [22] is used to solve for the SR-WLS cost
function and the exact solution in [21] for the SRD-WLS cost func-
tion. For reference purpose, we also provide the results of the MLE
that jointly estimates the source and sensor positions. The MLE is
implemented by the Gauss-Newton method, where the initialization
of each coordinate of the source is the true value added with inde-
pendent zero-mean Gaussian white noise with variance equal to two
times the CRLB, and the initializations of sensor positions are the
erroneous sensor positions. We stop the iteration once the parameter
change in the current step is larger than that in the previous step.

The range measurement covariance matrix is Q = σ2I, and
that of the range difference measurement is Qd = σ2(I + 11T )/2
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Fig. 2. Range (TOA) localization performance of SR-WLS consid-
ering sensor position errors, under the specific geometry in Table 1.

[2], where we fix the noise level at σ2 = 10−3 . The performance
index is mse =

∑L
l=1 ||u(l) − uo||2/L, where u(l) is the estimate

at ensemble l and L = 2000 is the number of ensemble runs.
Fig. 2 shows the results for the specific geometry in range local-

ization. The GTRS solution of the new cost function performs close
to the MLE and attains the CRLB accuracy. It provides about 5.5 dB
improvement over the previous cost function [25] that does not take
the sensor position errors into account when σ2

s becomes significant.
For the random geometry results shown in Fig. 3, the observations
are consistent and the improvement is about 4 dB.

For range difference localization, the results for the specific ge-
ometry are depicted in Fig. 4. The new cost function yields the
CRLB accuracy and matches the MLE performance. We would
like to point out that the MLE experiences the thresholding effect
at around σ2

s = 10−0.2, which is caused by the sensitivity of ini-
tialization and by the large number of unknowns to be found. On
the other hand, the solution from the new SRD-WLS cost function is
relatively stable and provides about 4 dB improvement over previous
SRD-WLS that ignores the sensor position errors. The observations
are similar for the random geometry results shown in Fig. 5, and the
new cost function has about 2.5 dB improvement.

6. CONCLUSIONS

Proper weightings must be used in the squared range and squared
range difference cost functions to compensate for the effect of squar-
ing. The weights derived in the previous work [25] is not adequate
when the sensor positions contain errors. In this paper, we generalize
the study and develop the new weights that take the sensor position
errors into account to improve performance. We show from the first
order analysis under Gaussian noise that although the weights are
constructed from the measurements that are noisy, the performance
of the source location solution closely follows the CRLB asymp-
totically. The new cost functions enable the application and devel-
opment of algebraic solutions, and improve the computational effi-
ciency relative to the iterative MLE.
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Fig. 3. Range (TOA) localization performance of SR-WLS consid-
ering sensor position errors, under the 200 random geometries.
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Fig. 4. Range difference (TDOA) localization performance of SRD-
WLS considering sensor position errors, under the specific geometry
in Table 1.
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