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ABSTRACT

Node localization is a key issue for wireless sensor networks
(WSNs). The triangulation method and the maximum likeli-
hood (ML) estimator are usually adopted for angle of arrival
(AOA) based node localization in WSNs. However, the lo-
calization accuracy of the triangulation is low, and the ML
estimator requires a good initialization close to the true lo-
cation to avoid the divergence problem. In this paper, we
develop two efficient closed-form AOA based localization
algorithms derived from effective auxiliary variables based
method. First, we formulate the node localization problem
as a linear least squares problem using auxiliary variables.
Based on its closed-form solution, a new auxiliary variables
based pseudo-linear estimator (AVPLE) is developed. Then,
we further propose an auxiliary variables based total least
square (AVTLS) estimator to improve the localization accu-
racy. In addition, we investigate the impact of the orientation
of the unknown node on estimation performance of the new
algorithms. Simulation results demonstrate that the new al-
gorithms achieve much higher localization accuracy than the
triangulation method and also avoid local minima and di-
vergence problem in ML estimator. Moreover, the AVTLS
estimator has higher localization accuracy than the AVPLE,
and its localization accuracy remains robust when the ori-
entation angle of the unknown node varies from 0 to 180
degrees.

Index Terms— Angle of arrival; node localization; aux-
iliary variables based pseudo-linear estimator; auxiliary vari-
ables based total least square; closed-form solution

This work was supported in part by the National Natural Science Foun-
dation of China (NSFC) under Grant No. 61273079/F030307, the Open Re-
search Project of the State Key Laboratory of Industrial Control Technology
of Zhejiang University, and Canada NSERC Grant No. RGPIN239031.

1. INTRODUCTION

Location information of sensor nodes in WSNs is essential
since it is the basis for many applications, including, for ex-
ample, target localization and tracking [1–3]. To obtain the
location information of each node, one possible method is
to equip each node with a GPS receiver. However, with se-
vere constraints on cost and energy [4], only limited number
of sensor nodes can be equipped with GPS receivers. These
nodes are called beacons as their accurate locations are known
by the GPS receivers. Other nodes without GPS receivers are
called unknown nodes, whose locations have to be estimated.
In this paper, we focus on the AOA technique [5] for

node localization in WSNs. One common method to obtain
AOA measurements is to use an antenna array on each sensor
node [6]. Different from target localization, AOA based node
self-localization needs to estimate both the location and ori-
entation of each unknown node. The orientation in the paper
refers to the reference direction against which the AOAs are
measured.
Over the past few years, several algorithms have been

developed for AOA based node localization in WSNs, such
as triangulation [5], [6], maximum likelihood (ML) estima-
tor [7]. However, the localization accuracy of the triangu-
lation method is low because of the error accumulation in
the process of obtaining the center and radius of the circum-
scribed circle, and theMLmethod either requires a reasonable
initialization close to the true solution or may suffer from lo-
cal minima and even divergence problems [8], [9].
In this paper, we develop an effective auxiliary variables

based method [10] to obtain the closed-form solution of AOA
based node localization problem. It improves the localiza-
tion accuracy compared with the triangulation method and
avoids the problem of ML estimator. First, we develop an
auxiliary variables based pseudo-linear estimator (AVPLE)
algorithm, which employs auxiliary variables to formulate the
self-localization problem as a linear least squares problem.
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Furthermore, we develop an auxiliary variables based total
least square (AVTLS) estimator to improve the localization
accuracy. In addition, we investigate the impact of the orien-
tation of the unknown node on estimation performance of the
new algorithms.

2. PROBLEM STATEMENT OF NODE
LOCALIZATION

Let us assume that for an unknown node, there areN beacons
within its sensing range, as shown in Fig. 1. Each beacon
equips with a GPS receiver and knows its accurate location,
denoted by qj = [aj , bj]

T , j = 1, 2, . . . , N , but does not
know its orientation. That is to say, we do not use the ori-
entation information of the beacon in the estimation. The un-
known node does not know its location or orientation, denoted
by p = [x, y, θ]T , is to be estimated in this paper.
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Fig. 1. Illustration of AOA based node localization in WSNs.

The beacons are signal emitters and the unknown node is
a signal receiver. Hence, the AOAs of the beacons can be
measured by the unknown node with respect to its own ori-
entation. Let β̃j denote the measured AOA by the unknown
nodewith respect to its own orientation θ from the jth beacon.
The AOA measurements are given as follows:

β̃j = βj +Δβj , Δβj ∼ N (0, σ2
j ), (1)

where βj is the true AOA measurement from the jth beacon,
Δβj ∼ N (0, σ2

j ) is the measurement noise following a Gaus-
sian distribution with mean zero and variance of σ 2

j .
In this paper, our objective is to estimate the location and

orientation of the unknown node based on the known loca-
tions of beacons and their AOAs measured by the unknown
node.

3. AUXILIARY VARIABLE BASED NODE
LOCALIZATION IN CLOSED-FORM

3.1. Auxiliary Variable based Pseudo-linear Estimator
(AVPLE)

As shown in Fig. 1, the relationship between the unknown
node and its neighbor beacons is:

tan(θ + βj) =
bj − y

aj − x
, j = 1, 2, . . . , N, (2)

where (aj , bj) is the location of the jth beacon, (x, y) and
θ denote the location and orientation of the unknown node,
respectively.
After mathematical derivations [11], we could have

sinβju1 − cosβju2 − (aj cosβj + bj sinβj)u3

= aj sinβj − bj cosβj ,
(3)

where auxiliary variables

u1 = x+ y tan θ,

u2 = y − x tan θ,

u3 = tan θ.

(4)

Since the true AOA, βj , cannot be obtained in the out-
door environment, we replace it with the measured AOA with
noise, β̃j , to formulate the linear least squares problem. Thus,
(3) could be approximately expressed as

AU ≈ b, (5)

where

A =

⎡
⎢⎣

sin β̃1 − cos β̃1 −a1 cos β̃1 − b1 sin β̃1

...
...

...
sin β̃N − cos β̃N −aN cos β̃N − bN sin β̃N

⎤
⎥⎦ ,

(6a)

b =

⎡
⎢⎣

a1 sin β̃1 − b1 cos β̃1

...
aN sin β̃N − bN cos β̃N

⎤
⎥⎦ , (6b)

U = [u1, u2, u3]
T
. (6c)

A least squares criteria can be used to solve (5). We adopt
the PLE to get a closed-form solution. The estimated value of
the auxiliary variablesU , denoted by Ûavple, is

Ûavple = argmin
U

||AU − b||22. (7)

Based on (7) and (4), the location and orientation of the un-
known node are given by⎡

⎣ x̂
ŷ

θ̂

⎤
⎦ =

⎡
⎢⎣

û1−û3û2

1+û2
3

û2+û1û3

1+û2
3

arctan û3

⎤
⎥⎦ . (8)
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Remark 1 Note that the tangent becomes unstable when the
orientation of the unknown node is near π/2 (or −π/2).
Thus, it may result in high estimation error of the auxiliary
variables based PLE (AVPLE) method when the orientation
is near ±π/2.

3.2. AuxiliaryVariables based Total Least Squares (AVTLS)

In fact, when the noise in A is zero, and the noise is just
confined to b, the LS estimator can get the optimal solu-
tions [12]. However, the measured AOAs in A exist noise in
this paper, and thus the LS estimator,X ls = (ATA)−1ATb,
is no longer optimal and it will suffer from bias and in-
creased covariance owing to the accumulation of noise errors
in ATA [13]. Therefore, for the node localization problem
in (2) and (5), we develop an auxiliary variables based total
least squares (AVTLS) estimator to improve the localization
accuracy of the unknown node.
The AVTLS estimator aims to offset the noise present in

A and b by perturbing A and b, meanwhile minimizing the
sum of squares of the norms of the perturbations, which is
concern with solving the the following constrained minimiza-
tion problem [12], [14]

[Δ̂, Γ̂] = argmin
b+Γ∈Range (A+Δ)

‖[Δ,Γ]‖F , (9)

and ‖. ‖F represents the Frobenius norm.
Thus the AVTLS solution Ûavtls meets

(A+ Δ̂)Ûavtls = b+ Γ̂, (10)

where Δ̂ and Γ̂ are the minimal perturbations as shown in
(9). The AVTLS solution can be obtained from a singular
value decomposition (SVD) of the augmented N × 4 matrix
[A, b]:

[A, b] = WΛV T =
4∑

i=1

λiwiv
T
i , (11)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0 are the singular values, and
W = [w1,w2,w3,w4] and V = [v1,v2,v3,v4] are unitary
matrix. Using the similar method in [12], [14], we can get the
AVTLS solution of our problem as follows

Ûavtls = − 1

v44

⎡
⎣ v14

v24
v34

⎤
⎦ , (12)

where v4 = [v14, v24, v34, v44]
T is the fourth column of ma-

trix V . Our solution is based on the assumption that the
smallest singular value is unique. Further, when the small-
est singular value is repeated at least two times, we can refer
to literature such as [13] and [15] to obtain the solutions for
this very rare occasions.

4. ERROR ANALYSIS FOR AVPLE AND AVTLS

4.1. Error Analysis for the AVPLE

The estimation bias of the auxiliary variables for the AVPLE
in (7) is given by

ΔUavple = −E
{
(ATA)−1ATφ

}
. (13)

where

φ =

⎡
⎢⎣

d1 sinΔβ1

...
dN sinΔβN

⎤
⎥⎦ . (14)

See [11] for mathematical details.
Then, based on Slutsky’s theorem [16], for large N the

AVPLE bias mentioned above can be approximated by

ΔUavple ≈ −E

{
ATA

N

}−1

E

{
ATφ

N

}
. (15)

As N → ∞, (15) becomes an equality.

4.2. Error Analysis for the AVTLS

Based on (10), the AVTLS solution can be given by

Ûavtls =
[
(A+ Δ̂)T (A+ Δ̂)

]−1

(A+ Δ̂)T (b+ Γ̂), (16)

where Δ̂ and Γ̂ are defined by [15]:

[Δ̂, Γ̂] = −λ4w4v
T
4 . (17)

Similar to [14], we could have

(A+ Δ̂)T (A+ Δ̂) = (A+ Δ̂)TA, (18a)[
(A+ Δ̂)T (A+ Δ̂)

]−1

(A+ Δ̂)T Γ̂ = 0. (18b)

Substituting (18) into (16), we have

Ûavtls =
[
(A+ Δ̂)TA

]−1

(A+ Δ̂)T b. (19)

Note that [11],
b = AU − φ, (20)

where U is the true values of auxiliary variables. Thus, (19)
can be expressed by

Ûavtls = U −
[
(A+ Δ̂)TA

]−1

(A+ Δ̂)Tφ. (21)

Further, the expectation is given by

E{Ûavtls −U} = −E

{[
(A+ Δ̂)TA

]−1

(A+ Δ̂)Tφ

}
.

(22)
Using Slutsky’s theorem [16], for sufficiently large N the
AVTLS bias approximately equals to

E{Ûavtls−U} ≈ −E

{
(A+ Δ̂)TA

N

}−1

E

{
(A+ Δ̂)Tφ

N

}
.

(23)
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5. PERFORMANCE EVALUATION

Matlab simulations are conducted to evaluate the performance
of our new algorithms. First, we investigate the impact of the
orientation of the unknown node on estimation performance
of the new algorithms. Then, the estimation errors of new
algorithms, the triangulation method and the ML estimator
are compared.
In this paper, we assume that all the AOA measure-

ments are subject to independent identically distributed (i.i.d.)
Gaussian white noise with the noise variance σ2. Root mean
square error (RMSE) is used to evaluate the estimation accu-
racy, denoted as RMSE =

√∑M
m=1 ‖p̂− p‖2/M , where p̂

is the estimated location, p is the true location of the unknown
node andM is the number of the simulation runs. Simulation
results are obtained withM = 2, 000Monte Carlo simulation
runs.

5.1. Impact of the Orientation on Estimation Perfor-
mance

We first investigate the impact of the orientation on estimation
performance of the proposed algorithms. We randomly place
eight beacons and one unknown node in the 100m × 100m
region. Fig. 2 shows the localization accuracy of the proposed
algorithms as the orientation θ changes from 0 to 180 degrees.
It can be seen that estimation error of the AVPLE is lower than
that of the triangulation, except when θ is near 90 degrees
(i.e., π/2), while the estimation error of the AVTLS remains
stable when θ varies from 0 to 180 degrees. Therefore, we
can conclude that the AVTLS estimator is more robust than
the AVPLE. In addition, the AVTLS estimation error could
be significantly reduced by means of coordinate translations
using the method in [14].
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Fig. 2. Impact of the orientation angle on estimation perfor-
mance of our proposed algorithms (N = 8, σ = 4).
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Fig. 3. Estimation errors of AVPLE and AVTLS in compari-
son with the triangulation and the ML estimator (N = 8).

5.2. Algorithm Comparisons

We consider a scenario with eight beacons and one unknown
node randomly deployed in the 100m × 100m region. The
ML estimator is implemented by the Nelder-Mead simplex
algorithm as in [17].
Fig. 3 illustrates the comparisons of estimation error (i.e,

RMSE) for the triangulationmethod, the AVPLE, the AVTLS
and the ML estimator initialized to the AVTLS. It can be seen
that the AVPLE and the AVTLS have lower estimation er-
ror than the triangulation, which verifies the effectiveness and
feasibility of our new algorithms. Moreover, the AVTLS has
higher localization accuracy than the AVPLE, while the esti-
mation error of the ML is lower than other three algorithms.
However, the ML estimator is sensitive to initializations and
may suffer from local convergence problem [11].

6. CONCLUSION AND FUTUREWORK

In this paper, we presented two novel auxiliary variables
based closed-form algorithms for the efficient AOA based
node localization. Compared with the triangulation, our new
auxiliary variables based algorithms significantly improve
the localization accuracy. And unlike the ML estimator, the
new algorithms do not suffer from local convergence prob-
lem. Moreover, we investigated the impact the orientation on
the estimation performance of the proposed algorithms. The
results show that the estimation error of the AVPLE is large
when the orientation θ is near 90 degrees, while the estima-
tion error of the AVTLS remains robust as θ varies from 0
to 180 degrees. To further improve the localization accuracy,
the constrained least squares [18] may be helpful to estimate
the unknown node.
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