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ABSTRACT
One of the largest challenges for multichannel localiza-

tion systems is developing methodologies that are robust to
interference. Unlike noise, interference is not random and
often has characteristics resembling the true signals of inter-
est. Interference often originates from multipath propagation,
jamming signals, or other sources. In this paper, we demon-
strate that we can significantly improve localization perfor-
mance in the presence of interference through the use of a
random sensor topology and matched field processing. To
show this, we apply concepts and results from random ma-
trix theory and compressed sensing. We demonstrate theo-
retically that random sensor topologies allow us to achieve
performance characteristics similar to those of random noise.
Specifically, we show that the localization performance im-
proves, with a high probability, at a rate proportional to the
number of sensors in the system. We verify these results
through simulation.

Index Terms— random sensor topology, matched field
processing, compressed sensing, random matrix theory

1. INTRODUCTION

Matched field processing is a model-based “generalized
beamforming” framework for localizing sources in com-
plex media [1, 2, 3]. Matched field processing is generalized
in the sense that sensors do not have to be arranged in a
particular configuration and is implemented with a known,
arbitrary propagation model of the environment. Matched
field processing has been studied and utilized extensively for
many applications, including radar [4], underwater acoustics
[5], seismology [6], and nondestructive testing [7, 8]. The
flexibility of matched field processing also makes it an at-
tractive tool for source localization with sensor networks and
cyber-physical systems.

In all of these scenarios, interference presents a signifi-
cant challenge to developing accurate localization methods.
Although effective under random noise, matched field pro-
cessing and other localization frameworks are often sensitive
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to unmodeled interference [9]. In many applications, interfer-
ence may originate from reflective boundaries, other sources
in an environment, or signal jamming. Unlike noise, interfer-
ence is not random and often shares characteristics with the
signals of interest, creating significant ambiguity in the mea-
sured data.

In this paper, we show that matched field processing can
achieve excellent robustness to unmodeled interference when
sensors are arranged randomly in space. Several researchers
have applied randomly positioned sensor networks and arrays
for localization with various methods [10, 11, 12, 13, 14]. We
expand on the literature by integrating and analyzing random
topologies with coherent matched field processing and ana-
lytically determining the performance rates through the use
of concepts from compressed sensing [15, 16, 17].

Our results demonstrate that, given the right conditions,
the localization performance will improve, with a high proba-
bility, at a rate directly proportional to the number of sensors
in the system. In comparison, the output signal-to-noise ratio
for the coherent matched field processor also improves with a
rate directly proportional to the number of sensors in the sys-
tem. Therefore, the coherent matched field processor, with a
random sensor topology, treats interference and random noise
in a similar, predictable manner. We validate these results
through simulation.

2. PROBLEM FORMULATION

2.1. Signal model

In this section, we present the signal and interference models
used in this paper. We assume the signal of interest originates
from a single point source and arrives at our sensors as plane
waves. Physically, this represents a “far-field” assumption,
i.e., the distance between the source and each sensor is greater
than two wavelengths λ. We define a measured plane wave
signal x(r, t) at a single sensor as

x(r, t) =

∫ ∞

−∞
G(ω) e−j[k(ω)r−ωt] dω , (1)

where k(ω) is a function of the wavenumber at each angular
frequency ω and G(ω) is the frequency response of the mea-
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sured wave. The wavenumber is inversely proportional to the
wavelength λ(ω) = 2π/k(ω) of the plane wave. The param-
eter r represents the distance traveled by the plane wave from
its origin to the sensor. If k(ω) is linear with respect to ω,
the wave has a constant group delay across all frequencies. If
the k(ω) is not linear, the plane wave is said to be dispersive
and contains a varying phase delay and group delay across the
frequency domain.

To measure plane wave signals, we assume we have a col-
lection of M sensors distributed across a space or medium.
We also assume the sensors measure each signal at t = t0 and
that each signal contains Q discrete frequency components.
Therefore, the signal measured at a single sensor is defined
by

x(r, t0) =

Q∑
q=1

V (ωq) e
−jk(ωq)r , (2)

where V (ωq) = G(ωq)e
jωqt0 and is the complex amplitude

of the signal at each frequency ωq for 1 ≤ q ≤ Q. We repre-
sent the multichannel signal xs(r0), corresponding to mul-
tiple distances r0 = [r1 r2 . . . rN ]T between the single
source and M different receivers, as an M × 1 vector

xs(r0) = [x(r1, t0) x(r2, t0) . . . (rM , t0)]
T

. (3)

We can also represent the multichannel signal vector as a
matrix-vector product where

xs(r0) = Φ(r0)v (4)

Φ(r0) =
[
e−jk(ωj)ri

]
ij

(5)

v = [V (ω1) V (ω2) . . . V (ωQ)]
T

. (6)

The M ×Q matrix Φ(r) represents a plane wave basis where
each column represents a unit plane wave signal for the sen-
sors at a single frequency ωj with wavenumber k(ωj). The
vector v contains the complex amplitudes corresponding to
each wavenumber in the signal.

For this paper, we assume Q is relatively small such that
the measured plane wave is relatively sparse over the fre-
quency domain. We also assume that the wavenumbers of
interest and the corresponding v vector are known. For some
applications, the wavenumbers may be estimated from cali-
bration data through the use of sparse recovery methods. This
approach has been used in prior work to estimate unknown
wavenumbers in multi-modal plane wave data [18].

2.2. Interference model

We assume the interference measured by each sensor is repre-
sented by the same frequency amplitude characteristics v as
the signals of interest. The only difference is that we assume
the interference corresponds to alternate travel distances that
may be random or correspond to a sources outside the region

of interest. Therefore, the measured signal x can be repre-
sented as a summation of the signals of interest xs(r0) and L
interfering signals xI(r1, r2, . . . , rL) and can be represented
as

x = xs(r0) + xI(r1, r2, . . . , rL) (7)

= Φ(r0)v +

L∑
ℓ=1

1

ηℓ
Φ(rℓ)v (8)

where Φ(·) is defined in (4) and rℓ represents an M × 1
vector of distances traveled by each interference signal for
1 ≤ ℓ ≤ L. Each element in rℓ is the distance traveled from
the interference source to each sensor. The parameter ηℓ spec-
ifies the signal-to-interfere ratio for each interfering signal ℓ.
As mentioned previously, the frequency characteristics, de-
scribed by v, are equivalent for both the signal of interest and
the interfering waves.

2.3. Matched field processing

To implement matched field processing, we construct a grid
of points within a spatial region of interest. For each point
on the grid, which corresponds to a collection of distances r
from that point to each sensor, we construct a signal model
w(r) that predicts what each sensor should measure given a
source at that grid location. For this paper, our model w(r) is
represented by a plane wave without interference

w(r) = Φ(r)v , (9)

where v is a known vector and r corresponds to a point on the
grid. In traditional beamforming, w(r) represents the weights
applied to each sensor measurement.

The measured data x and the model w(r) are compared
through application of a matched field processor. The output
of the matched field processor is known as an ambiguity func-
tion b(r) and provides a value of “fitness” between the data
and model at each point on the grid. The maximum value of
the ambiguity function represents the estimated location of a
source. In this paper, we use the coherent matched field pro-
cessor, defined by [3]

b(r) =
∣∣wH(r)x

∣∣2 . (10)

This processor is commonly used and assumes the model is
correct up to an unknown constant. As shown in (10), the
coherent processor outputs the squared inner-product between
the data and the model at each point on the grid.

If we substitute x and w(r) in (10) with their matrix-
vector product representations found in (7) and (9), respec-
tively, the coherent processor can be represented as

b(r) =

∣∣∣∣∣vHΦH(r)

(
Φ(r0) +

L∑
ℓ=1

1

ηℓ
Φ(rℓ)

)
v

∣∣∣∣∣
2

(11)

=

∣∣∣∣∣vHΦH(r)Φ(r0)v +

L∑
ℓ=1

1

ηℓ
vHΦH(r)Φ(rℓ)v

∣∣∣∣∣
2

.
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The expression in (11) shows that the ambiguity function is
the squared amplitude of the inner-product between the model
and the signal of interest plus the inner-product between the
model and the interference. In the following section, we ana-
lyze this expression for random sensor topologies.

3. RANDOM SENSOR TOPOLOGY PERFORMANCE

We now assume that each sensor, and therefore the distances
r between each sensor and any point on our grid, are ran-
domly distributed. We assume these distances are distributed
so that each element in the matrix Φ(r) is represented by a
Sub-Gaussian distribution [19].

This can be accomplished by choosing the distances in r
to be sufficiently large so that the phase of each element in
Φ(r) follows a circular uniform distribution. Since the distri-
bution of directional (or circular) random variables converge
to a circular uniform distribution as the variance grows large,
we can force each phase term to represent a circularly uniform
distribution by (I) defining the sensor locations to be random
and widely separated in space and (II) defining the grid so
that spacing between each grid point is large. We define large
or widely separately such that the distances r are sufficiently
larger than a wavelength λ.

If these conditions are met, it is well known that the matrix
Φ(r) will satisfy the restricted isometry principle (RIP) [20,
21, 22] defined by

(1− δs)∥v∥2 ≤ ∥Φ(r)v∥2 ≤ (1 + δs)∥v∥2 , (12)

with a small constant δs ≥ 0 and s non-zero components in
v. RIP states that if δs is small, then the matrix Φ(r) is nearly
orthogonal. Note that RIP is normally applied to underde-
termined matrices with sparse vectors v, but RIP is equally
applicable to any matrix. To represent the expression in the
more common underdetermined representation, we could ar-
bitrarily introduce additional columns into Φ(r) with corre-
sponding zero elements in v.

3.1. Restricted nullity property

To derive the performance characteristics of our random sen-
sor topology system, we utilize RIP and a property we refer
to as the restricted nullity property (RNP), which was first de-
rived in [8]. RNP is an extension of RIP for pairs of matrices.
RNP states that if two matrices Φ(r) and Φ(r0) both satisfy
RIP with a small δs and if the matrix 1/

√
2 (Φ(r) +Φ(r0))

satisfies RIP with a small δs, then the matrix pair satisfies [8]

−2δ
′

s∥v∥2 ≤ vHΦH(r0)Φ(r)v ≤ 2δ
′

s∥v∥2 (13)

with a small constant δ
′

s.
RNP states that if δ

′

s is small, then the columns of the
matrices Φ(r0) and Φ(r) are nearly uncorrelated. For our
matrices, RNP is generally satisfied if the distances vectors r0

and r are sufficiently random and distinct so that the phases
of each element in ΦH(r0)Φ(r) can also be represented by a
circular uniform random variable. This condition is satisfied
for the same properties described to satisfy RIP.

3.2. Performance characteristics

In this section, we outline two proofs that obtain the perfor-
mance characteristics of our matched field processing system
with a random sensor topology. Parts of these proofs, which
we extend in this paper, are discussed in depth in [8].

Theorem 3.1 If x = Φ(r0)v+
∑L

ℓ=1 η
−1
ℓ Φ(rℓ)v for a cho-

sen set of possible r vectors and if each Φ(·) matrix satisfies
RIP with constant δs and each pair of Φ(·) matrices satisfy
RNP with constant δs, then the ratio between the coherent
matched field processor’s ambiguity function at the source
b(r0) and at other locations b(r) satisfies

b(r0)

b(r)
≥ η2

(1 + η)2

[
(1− δs)

2

4δ2s
− 1 + δs

η2

]
, (14)

where η is defined as the total signal-to-interference ratio

η =

(
L∑

ℓ=1

η−1
ℓ

)−1

. (15)

Proof We outline the proof here. The result can be obtained
by separately considering b(r0) and b(r). For each term, we
apply RIP to the terms with equivalent matrix product pairs,
e.g. vHΦH(r0)Φ(r0)v, and RNP to terms with different ma-
trix product pairs, e.g. vHΦH(r0)Φ(r)v. In each situation,
the appropriate RIP and RNP inequality is applied in order to
find a lower bound for b(r0) and an upper bound for b(r). The
ratio of b(r0) and b(r) and their inequalities are then com-
puted and RIP is applied once more in the numerator of the
result.

Theorem 3.2 With respect to the number of sensors in the
system M , the ratio between the coherent processor’s ambi-
guity function at the source b(r0) and at other locations b(r)
increases at a rate

b(r0)

b(r)
= O (M) . (16)

Proof This theorem is derived from combination of Theo-
rem 3.1 and results from [19], which demonstrate that δs =
O(1/

√
M). By substituting this expression for δs into (14)

and simplifying the result, we get

b(r0)

b(r)
= O

(
η2

(1 + η)2

[
(1−M−1/2)2

4M−1
− 1 +M−1/2

η2

])
= O

(
M −M−1/2

)
= O (M) . (17)
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Fig. 1. The average ambiguity ratio of the localization re-
sults versus signal-to-interference ratio η for M = 10 (dark
lines) and 25 (light lines) sensors. Solid lines show results for
a random topology while dotted lines illustrate results for a
clustered topology.

These theorems illustrate the worst-case characteristics
for the ambiguity ratio b(r0)/b(r). As shown in (14), the
ratio increases with respect to the signal-to-interference ratio
with a rate of O(α(δs) − 1/η2) for some constant α(δs).
When η is large, the ambiguity ratio is dependent only on δs.

Theorem 3.2 and (16) expand on this by showing that
the worst-case ambiguity ratio improves with a rate directly
proportional to the number of sensors M . This result im-
plies that, if our sensors are distributed randomly in space,
we can consistently improve localization by including addi-
tional sensors. Since the coherent matched field processor’s
performance also improves at a linear rate in the presence of
random Gaussian noise, our result suggests that the coher-
ent matched field processor, with a random sensor topology,
treats interference and noise in a similar predictable manner.

4. SIMULATIONS

We verify the theoretical results through simulation. We con-
sider a 2 m by 2 m two-dimensional region with source lo-
cated in the area of interest. We assume the source transmits
a continuous single-frequency waveform with a wavenum-
ber of k(ω) = 500 cycles/m (a wavelength of approximately
1.25 cm). To perform matched field processing, we choose a
grid spacing of 2 cm in the horizontal and vertical directions.

The receiving sensor locations are chosen randomly from
independent uniform distributions for the horizontal and ver-
tical directions. We generate interference by assuming that
the boundaries of the 2 m by 2 m region act as perfect reflec-
tors and using ray-tracing procedures to determine the dis-
tance traveled by each path from the source to each sensor.
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Fig. 2. The average ambiguity ratio of the localization results
versus the number of sensors in the system M for signal-to-
interference ratios of η = 5 dB (dark lines) and −9 dB (light
lines). Solid lines show results for a random topology while
dotted lines illustrate results for a clustered topology.

We simulate every path between the source and each sensor
that interacts with a boundary up to five times. We distribute
energy equally among each of these interference signals.

We perform a Monte Carlo simulation with 50 different
random receiving sensor permutations for a varying number
of sensors and varying levels of signal-to-interference ratio.
The ambiguity ratio b(r0)/b(r) is computed by finding the
average ratio between the value at the source and the maxi-
mum value within the the remaining grid points.

Figure 1 illustrates the ambiguity ratio as a function of
the signal-to-interference ratio and Figure 2 shows the ambi-
guity ratio as a function of the number of sensors. The solid
lines illustrate a random sensor topology that satisfies RIP and
RNP with small constants. The dotted lines represent a cluster
sensor topology, in which a cluster of sensors are randomly
placed in the space, that does not satisfy RIP or RNP with
small constants. The sensors are clustered to be positioned
within 2 wavelengths of each other. Figure 1 verifies that the
ambiguity ratio follows the expression in Theorem 3.1 and
Figure 2 verifies that ambiguity ratio improves with a linear
rate, as shown in Theorem 3.2.

5. CONCLUSIONS

This paper theoretically demonstrates that we can achieve lin-
ear localization performance rates, with respect to number of
sensors, when data is corrupted by interference. We show this
by integrating the coherent matched field processor, with a
random sensor topology, and concepts from compressed sens-
ing and random matrix theory. In future work, we will expand
these results in the context of experimental systems.
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