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ABSTRACT

In this paper we present a novel clustering technique for compound

words. By mapping compounds onto their semantic heads, the tech-

nique is able to estimate n-gram probabilities for unseen compounds.

We argue that compounds are well represented by their heads which

allows the clustering of rare words and reduces the risk of over-

generalization. The semantic heads are obtained by a two-step pro-

cess which consists of constituent generation and best head selection

based on corpus statistics. Experiments on Dutch read speech show

that our technique is capable of correctly identifying compounds

and their semantic heads with a precision of 80.25% and a recall of

85.97%. A class-based language model with compound-head clus-

ters achieves a significant reduction in both perplexity and WER.

Index Terms— n-grams, compounds, clustering, sparsity, OOV

1. INTRODUCTION

Although n-grams are still the most popular language model (LM)

approach in automatic speech recognition (ASR), they have two ap-

parent disadvantages: first of all, they only operate locally and hence

cannot model long-span phenomena such as sentence or document

wide semantic relations. This can be partly alleviated by combin-

ing n-grams with semantic-analytical techniques such as LSA [1],

pLSA [2] and LDA [3], but continues to be a challenging research

task. The second disadvantage is data sparsity: there is not enough

training material to derive reliable statistics for every possible (spo-

ken) word sequence of length n, especially when n is large. Many

word sequences and even single words only occur a limited number

of times in the training material while others don’t occur at all. This

led to a series of smoothing techniques that redistribute the probabil-

ity mass and put aside some of the mass for unseen events [4, 5, 6, 7].

While improving results, smoothing doesn’t solve the actual

problem. A more versatile approach was suggested by Brown et

al [8] who assign words to classes, each word in a class having sim-

ilar properties. Instead of word n-gram probabilities, class n-gram

probabilities are calculated to achieve a higher level of abstraction

and reduce data sparsity. Although this approach seems very similar

to the way humans view words, it introduces the new and far from

trivial problem of clustering words into classes. Indeed, for the

idea of class n-grams to work, the words in a class should be both

semantically and syntactically similar. This is a challenging task

and even if it is accomplished successfully it may still suffer from

overgeneralization because of the many senses words can have [9].

In addition, most clustering algorithms rely either on a taxonomy

or on corpus statistics, where rare words are often not represented

(well enough).

In this paper we present a novel clustering technique for com-

pound words. By mapping compounds onto their semantic heads,

the technique is able to estimate n-gram probabilities for unseen

compounds. We argue that compounds are well represented by their

heads which allows the clustering of rare words and reduces the risk

of overgeneralization. This approach is especially interesting for do-

main adaptation purposes, but can also be applied in more general

contexts and research areas which rely on n-gram models such as

machine translation and optical character recognition. The technique

is evaluated on Dutch read speech, but the idea may extend to lan-

guages with similar compound formation rules.

The paper is organized as follows: section 2 gives a linguistic

description of compounds and zooms in on compounding in Dutch.

In section 3 we discuss related work. The remainder of the paper

focuses on our new approach. Section 4 explains semantic head

mapping (SHM) in more detail and section 5 handles the integra-

tion of the compound-head clusters into the LM. Finally, section 6

validates the merits of the technique experimentally. We end with a

conclusion and a description of future work.

2. COMPOUNDWORDS

2.1. Linguistic description

Compounding is the process of word formation which combines two

or more lexemes into a new lexeme e.g. energy+drink. This should

not be confused with derivation1 where a lexeme is combined with

an affix instead of another lexeme e.g. recreation+al. Compound

formation rules vary widely across language types. This section is

not meant to give an exhaustive overview, but rather to introduce

the concepts relevant to our approach. Examples are limited to Ger-

manic and Romance languages which are most familiar to the au-

thors.

The manner in which compound constituents are combined dif-

fers from language to language. Some languages put the constituents

after each other, which is (mostly) the case for English. Others apply

concatenation, possibly with the insertion of a binding morpheme.

Still others use prepositional phrases to describe a relation between

the head and the modifier e.g. the Spanish zumo de naranja (lit: juice

of orange) or the French machine à laver (lit: machine to wash).

Compounds can be broadly classified into 4 groups, based on

their constituent semantics:

1Compounding and derivation are not the only word formation processes,
but they are by far the most productive.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 141



1. endocentric compounds consist of a semantic head and

modifiers which introduce a hyponym-hypernym or type-of

relation e.g. energy drink.

2. copulative compounds have two semantic heads, both of

which contribute to the total meaning of the compound e.g.

sleepwalk.

3. appositional compounds consist of two (contrary) classify-

ing attributes e.g. actor-director.

4. exocentric compounds have a meaning that cannot be trans-

parently derived from its constituent parts e.g. skinhead.

The position of the head also varies among languages and often

corresponds to a specific manner of constituent combination. Ger-

manic languages predominantly use concatenation with the seman-

tic head taking the rightmost position in the compound. Romance

languages on the other hand are typically left-headed, applying the

prepositional scheme mentioned above on the right-hand side.

In what follows we will focus on compounds in Dutch, which

is our native language and the target language in our experiments,

but we believe that the presented ideas extend to other languages on

the condition that, like Dutch, they have a lexical morphology with

concatenative and right-headed compounding.

2.2. Dutch compounding

Like most Germanic languages, Dutch is a language with a rela-

tively rich lexical morphology in the sense that new (compound)

words can be made by concatenating two or more existing words

e.g. voor+deur+klink = voordeurklink (front door handle). Often

the words are not simply concatenated, but separated by a binding

morpheme which expresses a possessive relation between the con-

stituents or facilitates the pronunciation or readability of the com-

pound e.g. tijd+s+druk = tijdsdruk (time pressure). The majority

of compounds in Dutch are right-headed and endocentric; some are

copulative or appositional and a minority is exocentric [10]. Left-

headed compounds do occur e.g. kabinet-Vandeurzen (cabinet [of

minister] Vandeurzen), but are rare.

3. RELATEDWORK

3.1. Decompound-recompound approaches

In many languages compounding is a productive process which in-

duces the frequent creation of numerous new words all over the

world. This process results in observing many compound words,

most of them occurring rarely or with low frequency. As a conse-

quence these words are not included in a n-gram LM or are included

with a very unreliable probability. Moreover, even if sufficient train-

ing data is available, a typical application is limited in the number

of words it can include in its vocabulary. These issues give rise to

challenging problems in speech and language research which has

been addressed by several authors for languages as diverse as Ger-

man [11], Mandarin [12], and Hindi [13].

The most popular approach to address compounds in Dutch (and

also in other languages) is to split them into their constituent parts

and add these to the lexicon and LM. After recognition, the con-

stituents are then to be recombined. Earlier research based on rule-

based [14] and data-driven decompounding [15, 16] has shown that

this does indeed reduce the word error rate (WER) for Dutch ASR.

This technique was mainly developed to achieve maximal cov-

erage with minimal vocabulary, and has several disadvantages wrt

language modeling: (1) recompounding the emerging constituents is

not trivial because many constituent pairs also exist as word pairs;

(2) for unseen compounds, the constituents have never occurred to-

gether, resulting in the LM basing its decision on unigram probabil-

ities; and (3) given that in Dutch compounds the first constituents

generally play the role of modifiers while the last constituent acts as

semantic head of the compound [10], the left-to-right conditioning

of probabilities in n-grams is a bad fit to the underlying principle.

Although our approach also employs decompounding, it is im-

portant to note that it is substantially different from the large number

of algorithms performing lexicon reduction. Instead we use the de-

compounding information to introduce new knowledge into the LM

in order to model compounds when no data is available. As such, we

intend to extend the vocabulary with new, unseen words and over-

come the language modeling issues mentioned above.

3.2. Class-based n-gram models

The proposed technique is inspired by class-based n-gram models,

as introduced by Brown et al [8]. The idea of class n-grams is that

words are similar to others in their meaning and syntactic function.

Grouping such words into classes can help overcome the data spar-

sity in training material, since the prediction of infrequent or unseen

words is then based on the behavior of similar words that have been

seen (more often). Formula 1 shows how the n-gram probabilities

are calculated:

P (wk|w
k−1

1 ) = P (Ck|C
k−1

1 )P (wk|Ck) (1)

where wk and Ck denote the word and class at position k respec-

tively and wk−1

1
and Ck−1

1
denote the word and class sequences

from positions 1 to k − 1.
A problem with class-based approaches however is that they

tend to overgeneralize: the hypothesis that all words in the same

class behave in a similar fashion is too strong. Moreover, cluster-

ing words into appropriate classes is not an easy problem, especially

for rare words which are typically not included in a taxonomy and

appear too infrequently for corpus-based clustering techniques.

Our approach essentially consists of building a class-based n-

gram model, where only unseen compounds are clustered together

with their heads. In the next section we will argue that this clustering

suffers less from the above issues.

4. SEMANTIC HEAD MAPPING

The issues introduced in Section 3.2 are less problematic for com-

pounds, since they are well represented by their head, both syntac-

tically and semantically. For most compound words, the head has

the unique property of carrying inherent class information. This is

obviously the case for the predominant class of endocentric com-

pounds which introduce a hyponym-hypernym relation. It can be

argued though that this is also true for copulative and appositional

compounds. While these two types of compounds do not restrict the

meaning of the compound, their heads can still be viewed as classes.

The only troublesome compounds are exocentric compounds. How-

ever, because of their opaque meaning, they are in fact quite rare.

By mapping a compound onto its semantic head we effectively

apply a clustering that does not depend on external information and

can hence be applied to all compounds, regardless of their frequency

in a training corpus. By clustering only the infrequent compounds,

the obtained class-based n-gram reduces the risk of overgeneraliza-

tion observed in most class-based LM approaches. This simplifies

introducing new words and opens up possibilities for domain adap-

tation. To our knowledge this approach has not been described in
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the literature for any language and is substantially different from

the mentioned decompound-recompound approaches [11, 14, 15, 16]

that fail to take advantage of the valuable semantic information em-

bedded in compounds.

To obtain semantic heads for compounds, one could make use

of existing morphological information. This information however

proved to be insufficient for our needs, mostly because a semantic

head can consist of more than one constituent. In addition, no mor-

phological information is available for infrequent compounds, which

are the main target of our technique.

In the following sections we therefore propose a fully automatic

head mapper consisting of 2 parts: (1) a generation module which

generates all possible decompounding hypotheses; and (2) a selec-

tion module which selects the most plausible head.

4.1. Generation module

First, all possible decompounding hypotheses are generated by

means of a brute-force lexicon lookup: for all possible substrings

w1 and w2 of the candidate compound w, w = w1 + w2 is an

acceptable hypothesis if w1 and w2 are both in the lexicon. The sub-

strings are optionally separated by the Dutch binding morphemes

‘s’ and ‘-’. The module also works recursively on the first substring

i.e. if w1 is not in the lexicon, the module will verify whether or

not it’s a compound by itself. In its current implementation the

system always makes the assumption that the head is located at the

right-hand side of the compound, since this is almost exclusively the

case for Dutch, as we discussed in Section 2.2. Hence, we do not

expect this assumption to significantly influence the results.

We hypothesize that there is a significant discrepancy between

the frequency of compound modifiers and heads: since a (endocen-

tric) compound is typically a hyponym of its head and most if not

all hypernyms have multiple hyponyms, the heads tend to occur fre-

quently. Modifiers on the other hand are less frequent, because they

constrain the hypernym to a more specific and often completely new

domain e.g. schaak+stuk (chess piece). To account for this discrep-

ancy we allow the generation module to read from 2 different lexica:

a modifier lexicon Vm and a head lexicon Vh. Although the 2 lexica

can be filtered in any way, the current implementation only adopts

word frequency filters. An exception is made for acronym modifiers

consisting of all uppercase characters, which are automatically con-

sidered as valid words and are therefore not required to be lexical.

We further expect the amount of (false) hypotheses to increase

drastically with decreasing constituent length which is especially

true if the lexica contain (noisy) infrequent short words. Two pa-

rameters Lm and Lh are introduced to control the minimal length of

modifiers and heads respectively.

4.2. Selection module

The generation module hugely overgenerates because it only has ac-

cess to lexical knowledge. In the selection module we introduce

knowledge based on corpus statistics to select the most likely can-

didate. Concretely, the selection between the remaining hypotheses

is based on unigram probabilities and constituent length. We expect

longer and more frequent constituents to yield more accurate results

and provide selection parameters wlen, wu and wpu to weigh the

relative importance of the head length, head unigram probability and

product of the constituent unigram probabilities. We also considered

the use of part-of-speech (POS) knowledge, but did not achieve any

improvements with it, most likely due to incorrect POS tagging of

the infrequent compounds.

Algorithm 1 shows pseudocode for the complete SHM algo-

rithm, excluding the constituent separation by binding morphemes

for the sake of clarity.

function GENERATE(compound, Vm, Vh, Lm, Lh)

for allmod + head = compound do

if len(mod) ≥ Lm and len(head) ≥ Lh then

if head ∈ Vh then

ifmod ∈ Vm ormod ∈ acronyms then

hypotheses ← (mod, head)
else

hypotheses ← (GENERATE(mod, ...), head)

return hypotheses

function SELECT BEST(hypotheses,wlen, wu, wpu)

for all (mod, head) ∈ hypotheses do

score ← wlen ∗ length(head) + wu ∗ Puni(head)
+wpu ∗ Puni(mod) ∗ Puni(head)

if score > max score then

max score ← score

best ← (mod, head)

return best

Algorithm 1: Semantic head mapping algorithm

5. PROBABILITY ESTIMATES

The compound-head pairs produced by the SHM algorithm can be

used to enrich a language model with probability estimates for new,

unseen compounds. To this purpose, the semantic head and all of its

retrieved compounds are viewed as members of a single class. For

each word in this class, the n-gram probability can be estimated as

the product of a class n-gram probability and a within-class word

probability, as was shown in Equation 1.

Since we have argued that a compound is well represented by its

semantic head, we use the n-gram probability of the head as the class

n-gram probability for each member. The within-class probability

can be estimated by assigning a frequency count ĉ(u) to each of the
unseen compounds u and normalizing by the count of all members

of the class Chead, defined by the semantic head:

P (u|Chead) =
ĉ(u)

c(head) +
P

u′∈Chead
ĉ(u′)

(2)

A sensible value for ĉ(u) can be obtained empirically or more
analytically, by averaging over the counts of all cut-off out-of-

vocabulary (OOV) compounds with the same head i.e. the least

frequent compounds with the same head which are cut off or dis-

regarded during LM training. An alternative approach consists of

distributing the probability mass uniformly within each class.

6. EXPERIMENTAL VALIDATION

Our LM training data consists of a collection of normalized newspa-

per texts from the Flemish digital press database Mediargus which

contains 1104M word instances (tokens) and 5M unique words

(types) from which we extracted all the mentioned vocabularies and

word frequencies. Vocabularies of V words always contain the V

most frequent words in Mediargus. They were converted into phone-

mic lexica using an updated version of [17] and integrated, together

with the created LMs, into the recognizer described in [18]. The

development data for the head mapper originates from CELEX [19]

where the ground truth is based on a morphological analysis of 122k
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types of which 68k are compounds. For each compound only one

possible head is allowed which is optimal for most compounds, but

might be too strict for others e.g. borst+kanker+patiënt (breast can-

cer patient) should be mapped to the semantically most similar head

kankerpatiënt (cancer patient), but a mapping to patiënt (patient) is

still acceptable. The test data consists of the Flemish part of the Cor-

pus Spoken Dutch [20] component o, which contains read speech.

In order to focus on the efficiency of our proposed technique, the

component was reduced to those fragments that contain OOV com-

pounds for which a semantic head was retrieved. After reduction,

the test data, which we will further refer to as CGN-o, contains

almost 22h of speech. It consists of 192,153 tokens, produced by

25,744 types of which 1,625 are unseen in the LM training data and

953 are compounds.

6.1. Semantic head mapping

We applied an extensive grid search on the CELEX development

data for all of the system parameters and counted the amount of

true and false positives and negatives. We then calculated the pre-

cision and recall for each parameter setting and found that the

optimal results were achieved with Vm=600k, Vh=200k, Lm=3,
Lh=4, wlen=1, wu=0 and wpu=0. Table 1 shows that these pa-

rameters yield a precision of 80.31% and recall of 82.01% on the

development data. When tested on the evaluation set, the precision

is roughly equal with 80.25%, but the recall is even better with

85.97%. Moreover, many of the mappings that do not correspond

to the ground truth are similar to the borstkankerpatiënt exam-

ple. Although these mappings are suboptimal, they are nonetheless

adequate, hence likely to have a positive impact on a LM.

6.2. LM integration

We trained initial, open vocabulary n-gram LMs of orders 2 to 5 with

modified Kneser-Ney backoff on the 400k most frequent words in

Mediargus. The remaining, cut-off OOV words were used to gather

statistics for unseen words in a general OOV class. We then ex-

tended the 400k vocabulary with the unseen compounds for which

the semantic head mapper found a valid head. This new, extended

vocabulary was used when comparing WERs for the different esti-

mation techniques.

As a baseline we considered two techniques that do not have the

semantic head information at their disposal. Hence, these techniques

have to resort to general OOV statistics i.e. the probability mass for

the OOV class is redistributed over the newly added compounds us-

ing Equation 2, where all compounds are mapped to the OOV class

instead of to their semantic head. The redistribution was done in

two ways: uniformly and, analogous to section 5, based on the aver-

age cut-off OOV unigram count of all the compounds with the same

head.

OOV-based mapping was compared to both the unigram-based

and uniform SHM approaches, discussed in section 5. Although we

also attempted to optimize ĉ(u) empirically for both OOV-based and
SH-based mapping, these results are not reported, as they did not

invariably improve the results for all n-gram orders.

Table 2 shows the WERs of all these approaches, compared to

the WERs of the initial LMs with 400k words, where no mapping

was done. As can be seen, OOV-based mappings perform surpris-

ingly well wrt the initial LMs which seems to indicate that lexicon

extension is sufficient to recognize most of the unseen compounds.

We suspect that this is due to the nature of our test set, which con-

tains clean, read speech, and we expect this effect to be smaller with

CELEX (dev) CGN-o (eval)

precision recall precision recall

80.31% 82.01% 80.25% 85.97%

Table 1. Semantic head mapping results as measured by precision

and recall on CELEX and CGN-o

n-gram order

mapping technique 2 3 4 5

no mapping 31.31% 28.23% 27.59% 27.53%

uniform OOV 30.70% 27.67% 27.02% 26.97%

unigram-based OOV 30.63% 27.59% 26.96% 26.90%

unigram-based SHM 30.69% 27.65% 27.00% 26.95%

uniform SHM 30.33% 27.29% 26.65% 26.62%

Table 2. WERs for the initial 400k LMs (no mapping) and the dif-

ferent mapping techniques, as calculated on CGN-o

a more challenging data set. Unexpectedly, unigram-based OOV

mapping also performs better than unigram-based SHM. Upon fur-

ther investigation, we found that this was not caused by a low SHM

n-gram coverage, but by an underestimation of ĉ(u) due to the low
counts of the cut-off OOV compounds, compared to the count of

their heads. This shows that the unigram-based estimator is not re-

liable, as it is too dependent on the otherwise unused cut-off LM

training data. The results for uniform SHM confirm this conclusion,

as they produce a significant (Sign and Wilcoxon test p < 0.0001),
relative WER reduction of approximately 1% over OOV-based map-

ping. This performance is more or less constant over the different

n-gram orders and also shows in the perplexities where the relative

improvement is about 6%.

7. CONCLUSIONS AND FUTUREWORK

We introduced a new clustering technique to cope with language data

sparsity by mapping compound words onto their semantic heads.

Results on Dutch read speech show that our technique is capable

of correctly identifying compounds and their semantic heads with

a precision of 80.25% and a recall of 85.97%. A class-based lan-

guage model with compound-head clusters achieves a significant,

relative reduction in both perplexity and WER, of 6% and 1% re-

spectively. We believe that SHM can have an even bigger effect on

more spontaneous and/or noisy speech, which will be the subject of

future investigation.

The approach is still suboptimal in the sense that we throw away

any information from the modifiers. In the future we plan to investi-

gate how we can take advantage of the modifier semantics. Also, in

its current implementation we did not spend too much effort on the

decompounding module, as this was not the main focus of our work.

Better decompounding, including more accurate POS information,

could improve the results further.

It would be interesting to investigate whether our technique can

be extended to handle languages with a different lexical morphology.

Romance languages are typically left-headed, applying the preposi-

tional scheme mentioned in Section 2.1. In these languages, head

mapping could then improve the prediction of the words following

the compound instead of the compound itself.

Finally, we also plan to examine to what extent our technique

could be beneficial for cut-off OOV compounds.
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