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ABSTRACT

The Philips audio fingerprint[1] has been used for years, but its ro-
bustness against external noise has not been studied accurately. This
paper shows the Philips fingerprint is noise resistant, and is capa-
ble of recognizing music that is corrupted by noise at a -4 to -7 dB
signal to noise ratio. In addition, the drawbacks of the Philips fin-
gerprint are addressed by utilizing a “Power Mask” in conjunction
with the Philips fingerprint during the matching process. This Power
Mask is a weight matrix given to the fingerprint bits, which allows
mismatched bits to be penalized according to their relevance in the
fingerprint. The effectiveness of the proposed fingerprint was evalu-
ated by experiments using a database of 1030 songs and 1184 query
files that were heavily corrupted by two types of noise at varying
levels. Our experiments show the proposed method has significantly
improved the noise resistance of the standard Philips fingerprint.

Index Terms— Audio Fingerprint, Music Recognition

1. INTRODUCTION

An audio fingerprint is a compact representation of an audio sig-
nal that can be easily stored, indexed, and used for comparisons be-
tween audio documents in a database of very large scale. In recent
years many audio fingerprinting systems have been proposed. The
well-known fingerprinting algorithms include the Philips fingerprint
which encodes the spectral differences[1], the Shazam system which
encodes the spectral peaks[2], the RARE fingerprint based on Dis-
tortion Discriminant Analysis[3], and the Waveprint which uses the
wavelet transform[4].

The Philips Fingerprint [1] has been used commercially by Gra-
cenote for many years. One challenge facing the authors is to im-
prove the noise robustness of the Philips Fingerprint without chang-
ing the underlying fingerprint. The proposed method in this paper
addresses this challenge.

The Philips fingerprint consists of two main parts: a fingerprint
representation and a fingerprint index. Most extended works such
as [5, 6] studied the indexing part of the algorithm. This paper in-
stead focuses on the fingerprint representation itself. While the work
in [7, 8, 9] can be viewed as an improvement to [1] by using local-
ized binarization and more robust filters, these methods change the
underlying fingerprint feature. This would require re-computing all
the existing fingerprints from millions of audio documents for any
services that are currently using the Philips fingerprint. The pro-
posed extension in this work not only improves its noise robustness,
but also can be seamlessly incorporated into the Philips fingerprint
scheme so that any existing fingerprints can still be used. We achieve
this by adding a simple extra matching step under the original Philips
framework.

The Philips fingerprint is well suited to find a match in the
presence of codec disortion, GSM encoding, compression, filtering,
echo, and the addition of low level noise[1]. However, its robustness
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against noise that is equally loud or louder than the underlying mu-
sic is largely unknown. The authors found no existing work in this
area. Unfortunately, music identification services largely deal with
queries that have dominant noise from many sources (wind noise,
car noise, talking and crowd noise, etc.). In this work, we conduct
extensive experiments to show that the Philips fingerprint is capable
of recognizing music that is corrupted by noise and improve further
on this ability with the Power Mask method.

Our method improves the noise resistance of the Philips finger-
print by addressing its disadvantage when compared to the spectral
peak-based algorithms [2, 10]. Spectral peak based algorithms try to
match audio documents by considering peaks in the audio spectrum.
On the other hand, the Philips algorithm is looking at all parts of
the spectrum at all times. As a result, if an audio signal is corrupted
by noise in parts of the audio spectrum where there is not much en-
ergy in the music, the Philips fingerprint tends to represent the noise
rather than the music. This disadvantage is addressed in this paper.

This paper describes an addition to the Philips fingerprint that
allows us to determine the part of the spectrum that is more relevant
to the fingerprint. This new addition is a binary mask that encodes
the region of the Philips fingerprint that contains the more noise re-
sistant part of the audio. This mask is determined by a particular
type of power measurement across the audio spectrum, so we call
it a “Power Mask”. By applying the Power Mask to the original
Philips fingerprints during the matching process, the parts of the fin-
gerprint that are more noise resistant are penalized to a larger degree
if a mismatch occurs, which improves the fingerprint’s robustness to
dominant noise significantly. The proposed Power Mask is easy to
calculate, small in size, efficient to apply during the matching pro-
cess, and can be used with the Philips’ indexing method [5, 6].

The remainder of this paper is organized as follows. In section
2 we describe the Philips fingerprint and motivate the Power Mask
based scheme by describing the weakness of the Philips fingerprint.
In section 3 we introduce the Power Mask based fingerprint as our
main contribution. In section 4, the effectiveness of the proposed
method is evaluated by experiments using heavily corrupted query
files. Finally we conclude the paper in section 5.

2. THE PHILIPS FINGERPRINT

The standard Philips fingerprint [1] is created by taking the spectrum
of an audio signal once every 11.6 milliseconds. The overlapping
spectrum frames have a length of 0.37 seconds. This spectrum is
then grouped into 33 bands that are logarithmically spaced from 300
Hz to 2000 Hz. A fingerprint for each spectrum frame, referred to
as a sub-fingerprint, is a 32-bit number that represents the sign of
energy differences along the frequency and time axes:

1 if P(n,m)— P(n,m+1)—
(P(n—1,m)—P(n—1,m+1)) >0 (1)
0 otherwise

F(n,m) =
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where F'(n, m) is the m-th bit of the sub-fingerprint at time frame n
and P(n, m) denotes the power of the band m at time frame n of the
audio spectrum. Sub-fingerprints are grouped together sequentially
to form 3 second blocks, which consist of 256 sub-fingeprints.
During the matching process, two audio signals of 3 seconds in
length are declared a match if the Bit Error Rate, (BER), between
the two derived fingerprint blocks is below a certain threshold 6. In
[1], & = 0.35 is shown to produce a very low false positive rate.
The BER between two fingerprint blocks () and R is calculated as
follows:
256 |32

BER = Zn:l m=1 (R(n7 m) 52 Q(n7 m))

TB @

where @ is the XOR logic operation and 7'B is the total number of
bits in a fingerprint block, (256 x 32 = 8192).

This paper focuses on improving the representation and match-
ing process of the Philips fingerprint. The indexing part of the
Philips fingerprint is out of the scope of this work. See [1] for a
complete explanation.

The Philips fingerprint encodes the sign of the power difference
for each band, which has proven to be very robust to many kinds of
light distortion [1]. However, the Philips fingerprint only keeps the
sign of a power difference, completely discarding the information
containing the amount of the power difference. This drawback is
addressed in Sec. 3 by introducing a Power Mask to the matching
process, which weights different bits based on their relevance to the
fingerprint.

3. THE POWER MASK BASED FINGERPRINT

The region of the audio spectrum where the power differences are
close to zero is the part of the fingerprint that is most vulnerable
to external noise. We call this region of the spectrum the “weak-
bit region” because the fingerprint bits calculated from this region,
(referred to as the “weak bits”), are easily corrupted by noise, (i.e.
fingerprint bits can be changed by adding a small amount of noise
energy). Similarly, fingerprint bits extracted from the “strong-bit
region”, where the absolute power differences of the audio spectrum
are large, are referred to as “strong bits”.

The concept of weak bits has been utilized in [1] as a candidate
gathering method in the index of the Philips fingerprint to generate
a list of probable candidates. By flipping the most unreliable bits in
the query, candidates with either bit pattern can be pulled in from
the database. However this information about the reliability of fin-
gerprint bits has never been utilized during the matching process.
We incorporate a variant of this information in the matching process
for the proposed fingerprint scheme.

When noise becomes dominant, weak bits in the Philips finger-
print tend to be representative of the external noise rather than the
music signal itself. In this case, a significantly higher BER between
a noise-corrupted query and its target will result in a mismatch. By
giving the same weights to the “weak bits” and “strong bits” dur-
ing the matching process, the reliability of the bits is not taken into
consideration. We now discuss how to correct this.

3.1. The Power Mask

There are many ways to determine if a bit F'(n; m) plays a relevant
part in the fingerprint. Peaks are a common measurement in many
fingerprints, but in this work we use strong bits. This is a bit that has
a large power difference across both time and frequency. For each

sub-fingerprint of 32 bits, a Power Mask is a second 32-bit number,
which encodes a strong bit by 1 and a weak bit by 0:

1 if F(n,m) is a strong bit

3
0 if F(n,m) is a weak bit ©)

PM(n,m) = {

where PM (n,m) is the Power Mask for the m-th bit of the sub-
fingerprint at time frame n. Now let DI F'(n, m) denote the absolute
power difference along the time and frequency axes at band m and
frame n:

DIF(n,m)=|P(n,m) — P(n,m+ 1) 4)
—(P(n=1,m)—P(n—1,m+1))|

We set the strong bits to be the bits that correspond to the largest
T absolute power differences, DIF(n,m), of the power spectrum
at time n. In this work, we use 7' = 24. This number is further
explained in Sec. 4.1. The reason for using a fixed number of strong
bits per sub-fingerprint is explained in Sec. 3.2.

In our implementation, a Power Mask is an array of 32-bit un-
signed integers each of which has a corresponding sub-fingerprint.
Each 32-bit unsigned integer has a bit set to 1 for each of the 71" fre-
quency bands that corresponds to a strong bit in the sub-fingerprint.

The Power Mask is not created for a query signal, but is created
on the reference side only. The reason for this is that the reference
signal, which does not contain any noise or distortions, has the true
representation of the absolute spectral differences that are charac-
teristic of the music signal we are trying to match to. On the other
hand, a query could have additional noise or distortions at any part of
the spectrum at any time during the fingerprint. So making a Power
Mask from the query would not accurately show which bits are rele-
vant to the fingerprint. If the power differences from the spectrum of
the external noise are large, the Power Mask will set strong bits that
represent the noise instead of the music signal.

3.2. Matching with the Power Mask

Given two fingerprint blocks ) and R that are derived from a query
and a reference signal respectively, and the Power Mask P M that is
calculated from the reference signal, the BER between () and R is
calculated using Eq. 5:

BER - Za Sy o x (B(n,m) & Q(n, m)&(=PM(n,m))
ax WB+B8xSB
n SR8 322 B X (R(n, m) @ Q(n, m))&PM(n, m)
ax WB+ 3 xSB

(O]

where WB = 256 x (32 — T') and SB = 256 x T are the number
of weak bits and strong bits respectively in a fingerprint block, o and
[ are the penalty weights given to the weak bits and strong bits, and
& and — are the logic operations AND and NOT respectively.

A strong bit is more noise resistant than a weak bit due to its
large absolute power difference. A mismatch at a strong bit of the
reference fingerprint R lends more weight to the assumption that R
is not a match to the query fingerprint Q. Based on this assumption,
we set the ratio for g to be greater than 1, giving a larger penalty to
the mismatches occurring at the strong-bit locations.

Similar to Philips, two audio signals of 3 seconds long are con-
sidered a match if the BER calculated using Eq. 5 between the two
derived fingerprint blocks is below a certain threshold 6.

In this work, the number of strong bits per sub-fingerprint is a
fixed number, T'. However, this does not need to be the case. An
adaptive threshold can be applied to each time slice of spectrum that
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allows the mask to vary the number of strong bits per sub-fingerprint.
By only selecting the number of bits that have an absolute difference
value that is greater than an adaptive threshold, slightly better re-
sults have been obtained as compared to setting a fixed 7". However,
this variable number of strong bits per sub-fingerprint comes at the
expense of efficiency, which is explained below.

The match logic for the Philips fingerprint looks for a BER un-
der a certain threshold between the query and reference fingerprint
blocks. According to Eq. 5, a BER is calculated by dividing the
weighted number of mismatched fingerprint bits between the query
and reference fingerprint block by the weighted total number of fin-
gerprint bits in a fingerprint block. By fixing the number of strong
bits per sub-fingerprint to a constant value 7', the weighted total
number of fingerprint bits in a fingerprint block becomes a constant.
In this way, a BER can be calculated quickly by multiplying the
weighted number of mismatched bits with a constant.

On the other hand, if we allow the number of strong bits to
vary from sub-fingerprint to sub-fingerprint, we have to count the
weighted total number of strong bits and weak bits in each finger-
print block, and divide by this number for every BER calculation.
This is not a large concern when performing a single comparison,
but when we perform this operation millions of times to locate the
correct match from among thousands of possible candidates returned
by the Philips indexing method, this becomes a serious performance
hit. Dividing and bit counting using the variable number of strong
bits, even when using hardware calls or the popcount algorithm[11],
takes significantly more cycles than the single multiplication that is
achieved with a fixed number of strong bits per sub-fingerprint.

4. EXPERIMENT

We now compare the proposed Power Mask fingerprint to the stan-
dard Philips fingerprint. The effectiveness of the Power Mask based
fingerprint is demonstrated by experiments using a database of 1030
songs and 1184 query files.

4.1. Experiment Setup

The reference data set is made of approximately 60 hours of 1030
music pieces that are chosen from popular music, heavy metal, rap,
country, classical, jazz, and international artists. The query test set
is made from 37 song fragments from these same genres.

Many works [1, 5, 6] have shown that the Philips fingerprint is
well suited to match with light distortions and noise. We are in-
terested in the robustness of the Philips and the Power Mask based
fingerprint against dominant noise. So each query song fragment has
been corrupted by varying levels of two types of noise. The first type
of interfering noise consists of a group of people talking along with
background music and ambient noise that was recorded in a party
environment. We refer to this type of noise as “crowd noise”. The
second type of noise is “pink noise”, simulating steady state wind
or car engine noise. The crowd and pink noise were chosen in our
evaluation since they are most representative of the interfering noise
that is experienced with real-world mobile queries submitted to Gra-
cenote. They are considered the main source of error in a mobile
device fingerprint match.

Each 15-second query fragment, which corresponds to 5 finger-
print blocks, is mixed with two types of noise at a Signal to Noise
Ratio (SNR) ranging from 0 to —15 dB at one decibel decrements.
Note that at 0 dB SNR, the distortion introduced by the noise is al-
ready very noticeable, beyond any codec or filtering distortions stud-
ied in many existing works. In most cases, SNR of —10 dB or worse

drowns out the music to such a degree that the song is barely audible
to humans, simulating the worst case scenario in music identifica-
tion. Each type of noise, crowd or pink noise, is added at the 16
different SNR levels to the original music fragment, making a total
of 16 different probe queries for each noise type and for each of the
37 music fragments. Thus, the total number of query files is 1184.

Each corrupted query signal is fingerprinted using the Philips
method. Each reference audio document is fingerprinted with the
proposed Power Mask fingerprint. Since a Power Mask is just an ad-
ditional 32-bit mask that comes in with each Philips sub-fingerprint,
this fingerprint set can be used for the standard Philips match as well.

As mentioned in Sec. 3, the concept of a weak bit has been
utilized in [1] as a candidate gathering method for the Philips finger-
print. Given a sub-fingerprint extracted from a query, a number of
weak bits are permuted to generate a list of probable candidate song
tracks from the reference database. Philips and Gracenote experi-
ments confirm that for low-quality audio query files, using 14 weak
bits per sub-fingerprint achieves good candidate searching perfor-
mance. With the Power Mask based fingerprint, experimental evi-
dence shows that the number of strong bits needs to be even higher,
at 24, if we are going to use a single static number.

For a query probe of 15-seconds, 5 consecutive fingerprint
blocks, Fgo := (Q1,Q2,Q3,Q4,Qs), are extracted. Each finger-
print block {Q; : ¢ = 1,...,5} consists of 256 sub-fingerprints
representing 3 seconds of audio each. The identification task is to
find from a database of reference tracks an audio document with
a fingerprint representation of {R; : 7 = 1,..., K} and a time
offset t € {1, ..., K}, such that five consecutive fingerprint blocks
Fr, := (R¢, Ris1, ..., Ri+4) are similar to Fg.

Given a query fingerprint Fg and a 5-block reference fingerprint
Fg, at the time offset ¢, 5 BER values {By4;j—1: j = 1,...,5} are
calculated, using Eq. 2 for Philips or Eq. 5 for the Power Mask,
between each query fingerprint block (); and reference fingerprint
block R4 ;j—1 in a time-aligned manner. A score S; is given to the
5-block reference fingerprint F'r, as follows:

IIliIlj Bt+j—1 if I’IliIlj Bt+]‘_1 § 0.35
S,=4B else if 2 or more BERs € (0.35,0.43]
+00 otherwise

(6)

where B is the average value of the two or more BERSs that are in the
interval of (0.35,0.45].

According to Eq. 6, a 5-block reference fingerprint will have
a non-infinity score if and only if one of its five fingerprint blocks
has a BER below the threshold # = 0.35 as suggested by [1], or at
least two fingerprint blocks have a BER below § = 0.43 based on
experimantal evidence in running a production service.

An overall score for a reference song is the lowest score obtained
from one of its 5-block fingerprints. The song with the lowest non-
infinit score is returned as a match to a query probe. It is considered
as a correct match if the music in the noisy query is from the re-
turned song track. Otherwise, the returned song track is considered
a false positive. If no track with a non-infinite score is returned, the
fingerprint has failed to find a match to the query.

Since this work focuses on the underlying fingerprint and match-
ing process, instead of the indexing method, the experiment is con-
ducted by running a brute force match of a query against all the 1030
reference tracks. However, the candidate gathering method which
uses the standard Philips fingerprint index method, can still be used
with a very large database. The power mask only affects the final
brute force match.
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Fig. 1. The averaged Signal to Noise Ratio (SNR) below which the
fingerprint fails to make a correct match. For illustration purpose,
negative SNR (—SNR), which is equivalent to Noise to Signal Ratio,
is used to label the Y-Axis. The higher the “—SNR” is, the more
robust a fingerprint is against noise. PP stands for Philips. PM stands
for Power Mask.

4.2. Experiment Results

To investigate the Power Mask’s robustness against noise, we ran
a fingerprint match, as described in Sec. 4.1, on each of the 1184
query song fragments with varying noise levels, and compared the
results to standard Philips.

We first show the noise level above which the Philips fingerprint
and the proposed method fail to make a correct match. This is aver-
aged across the 37 query fragments. Fig. 1 shows the box plots of
these results by Philips (PP) and the proposed Power Mask (PM) for
crowd noise and pink noise. Each box plot is generated by the 1184
data points that represent the 37 query fragments. The lower and up-
per lines of each box show 25th and 75th percentiles of the sample.
The line in the middle of each box is the sample median. The lines
extending above and below each box show the extent of the rest of
the samples, excluding outliers. The Y-Axis is the negative Signal
to Noise Ratio (—SNR) which indicates the noise level over the mu-
sic in the queries. The higher the “negative SNR” is, the louder the
noise is compared to the music, and therefore the more noise resis-
tant a fingerprint is. When the interfering noise is crowd noise, there
are 3 cases with Philips and one case with the Power Mask where
the noise must be below the music in order to be correctly matched.
In Fig. 1 this is indicated by the negative portion of the Y axis.

It can be seen from Fig. 1 that the Philips fingerprint is able to
recognize queries that are corrupted with crowd noise at an average
SNR of —4.35 dB and with pink noise at an average SNR of —7.27
dB, respectively. This is a very impressive result considering the fact
that the noise is approximately twice as loud as the underlying mu-
sic at a SNR of —6 dB. The proposed Power Mask based method
further improves the noise resistance to —6.22 dB for crowd noise
and —9.14 dB for Pink Noise, respectively. On average, a 1.87 dB
improvement was achieved for both the crowd noise and pink noise
when using the Power Mask. Nonparametric paired sign tests show
that the differences between these two methods are statistically sig-
nificant at the 5% significance level for both types of noise.

In addition, we found that both methods show better perfor-
mance against pink noise than crowd noise. Since the energy of
crowd noise is less evenly distributed over the spectrum than pink
noise, we believe that for the same signal to noise ratio, a fingerprint
bit is more likely to be corrupted at the region of the spectrum where
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Fig. 2. Recognition Rate of the Philips fingerprint and the proposed
Power Mask at different Signal to Noise Ratio (SNR) against a ref-
erence database of 1030 song tracks. X-Axis is the SNR. Y-Axis is
the Recognition rate. PP stands for “Philips”. PM stands for “Power
Mask”.

the energy of the crowd noise is concentrated.

Amongst the 592 query files that were corrupted with pink noise,
2 queries resulted in a false positive at a SNR of —9 dB and —14
dB, respectively, when using the proposed Power Mask method.
Amongst the 592 query files that were corrupted with crowd noise,
one false positive resulted at an SNR of —6 dB. No false positive
was found using the standard Philips method. This implies that the
default Philips BER threshold that we used for the Power Mask
method is not the optimal one. The BER threshold might need to be
moved lower, and this will be investigated in future work.

Fig. 2 shows the recognition rates using both fingerprint meth-
ods for the 37 query fragments mixed with both types of noise for
SNRs ranging from 0 to —15 dB. As expected, the recognition rate
goes up as the Signal to Noise Ratio increases. It also shows that
both methods perform better with pink noise than with crowd noise,
which is consistent with the result presented in Fig. 1. The Power
Mask method achieves better results than the standard Philips fin-
gerprint for both pink noise and crowd noise. With pink noise, the
recognition rates of the Power Mask method and Philips are 100%
and 97.30% at a SNR of 0 dB respectively, and they drop to 50%
approximately at a SNR of —10 dB and —7.5 dB respectively. With
crowd noise, Fig.2 shows the Power Mask with a 97.30% recog-
nition rate at 0 dB, and a 50% rate at —6 dB. In comparison, the
Philips method gets a recognition rate of 89.19% at 0 dB and a 50%
recognition rate at approximately —5 dB.

5. CONCLUSIONS

In this paper we have studied the noise resistance of the widely used
Philips fingerprint system and have shown that the Philips finger-
print performs well with significant levels of noise. This paper also
introduces a method to weight the relevant bits in a Philips finger-
print, which results in the fingerprint being able to handle almost 2
decibels of additional noise. The proposed Power Mask method is
easy to calculate, small in size , efficient to apply during the match-
ing process, and can seamlessly work in conjunction with the orig-
inal Philips scheme. Extensive experiments show that the proposed
method improves the noise resistance of the Philips fingerprint sig-
nificantly. Future work includes finding a better BER threshold for
the Power Mask based fingerprint matching.
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