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ABSTRACT

We propose a novel deep learning vector quantization (DLVQ) algo-
rithm based on deep neural networks (DNNs). Utilizing a strong rep-
resentation power of this deep learning framework, with any vector
quantization (VQ) method as an initializer, the proposed DLVQ tech-
nique is capable of learning a code-constrained codebook and thus
improves over conventional VQ to be used in classification prob-
lems. Tested on an audio information retrieval task, the proposed
DLVQ achieves a quite promising performance when it is initialized
by the k-means VQ technique. A 10.5% relative gain in mean aver-
age precision (MAP) is obtained after fusing the k-means and DLVQ
results together.

Index Terms— Deep neural network, learning vector quantiza-
tion, k-means, information retrieval

1. INTRODUCTION

Deep learning demonstrates a great success recently in the field of
automatic speech recognition (ASR) [1, 2] and computer vision [3].
Video, an important part of the Big Data initiative, is believed to
contain the richest set of audiovisual information. Video data mining
has thus become a critical but challenging problem in recent years
[4, 5]. This paper addresses issues related to learning a good acoustic
codebook extending the learning vector quantization (LVQ) concept
[6, 7] to a deep learning structure for representing the features of
the sound tracks from videos. Furthermore, the proposed codeword
learning method is a general one that can be easily applied to visual
features and other multi-modal features in the related fields.

One of the most popular methods to perform acoustic informa-
tion retrieval is to code an audio clip with proper “words” to convert
it into a text-like document and employ methods from statistical in-
formation retrieval. The most common way is to extract feature vec-
tors from the audio, learn a codebook and vector quantize the feature
vectors into codewords with the codewords being treated as words in
text retrieval [8]. After getting this text representation of an audio
clip, the bag of words (BoW) based methods [8] with topic model
[9] are often employed to find a vector representation [9]. At the last
step, various classifier learning schemes, such as supported vector
machines (SVMs) [10], and maximal figure of merit (MFoM) [11],
are used to derive models for performing the final retrieval. A good
codebook is a key to designing a high-quality BoW-based informa-
tion retrieval system.

To learn a codebook for vector quantization (VQ), k-means [12]
or Linde-Buzo-Gray (LBG) [13] algorithms are the most commonly
adopted ones. But k-means/LBG based VQs are designed to mini-
mize quantization distortion which usually use mean squared error
(MSE) as a criterion. It is beneficial for data compression and re-
construction but might not be the case for getting a good BoW rep-
resentation. To improve them, learning vector quantization (LVQ)

can be utilized which has been shown to help both ASR [7] and text
classification [14]. For the learning method for LVQ, the success
of deep learning in ASR [1, 2, 15], especially the success in feature
representation [16, 17], inspired us that deep neural network (DNN)
might be a good representation learner. Utilizing the strong repre-
sentation power of the deep learning framework, we propose a novel
way to perform LVQ. First, with an initial codebook learnt by k-
means/LBG, the codeword for each frame is obtained by standard
VQ. Then, the codeword is used as the class label for each frame to
train a DNN with cross-entropy as the optimization objective. Each
element of the output vector (smoothed by a softmax function) rep-
resents the posterior probability with which the input frame belongs
to a codeword. A BoW representation of an audio clip is then ob-
tained by propagating frames of the clip through the trained DNN
and adding up all the output vectors. We refer to this deep structured
LVQ as deep learning vector quantization (DLVQ). The proposed
DLVQ method is tested on an audio information retrieval task. A
10.5% relative gain in mean average precision (MAP) [18] is ob-
tained after fusing the k-means and DLVQ results together.

2. BASELINE VQ METHODS FOR DLVQ
INITIALIZATION

To learn a codebook, the most commonly adopted algorithms are k-
means [12] and LBG [13]. Performing exact k-means or LBG algo-
rithm is not feasible in this task because the two similar methods both
suffer from large memory consumption and slow convergence speed
when it comes to high vector dimension, large number of samples
and large cluster (codeword) size in our audio information retrieval
task.

Standard k-means is performed as follows: for a data point, its
distance to a cluster is defined as its distance to the centroid of the
cluster, where the centroid of a cluster is defined as the mean posi-
tion of all the data points contained in the cluster. k-means algorithm
uses an iterative approach. Normally, the initial positions of k clus-
ters centroids are randomly chosen. In a standard k-means iteration,
each data point is labeled to the nearest cluster. After all the data
points are labeled, the centroid of each cluster is then updated ac-
cording to its data points. The labeling step and updating step are
iterated until the labels do not change any more. After having found
cluster centroids by performing k-means, a codeword label can be
assigned to any new data point by finding the nearest centroid to it,
and this is called VQ. The problem is NP-hard in Euclidean space
for a general number of clusters k. Much research has been done
to improve the performance of k-means including utilizing graph-
ics processor units (GPU), and considerable speedups were reported
[19]. But the huge memory consumption problem is still serious
with high vector dimension, large number of samples and large clus-
ter number which is almost exactly the situation we are facing when
building an acoustic codebook. The LBG algorithm that performs in
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a similar way as k-means suffers the memory problem as well.
In our effort to build a baseline system, to alleviate the prob-

lem of memory consumption, we use a level-structured k-means [20]
based VQ system as in Fig. 1. At the first level, data points were clus-
tered by k-means into a small number of clusters (n1) which is much
smaller than the desire cluster number. Then at the second level, k-
means was performed within each cluster to get a fixed number (n2)
of sub-clusters. By repeating this up tom levels, we can get

∏m
i=1 ni

clusters. The cluster centroids are then used to do VQ. This method
alleviates the memory issue, because we perform k-means on sub-
sets of data and with smaller cluster numbers, but due to the large
amount of data in our task (one hour audio recording will generate
around 360,000 feature frames in our common experiment setting),
we still need to randomly select subsets of training data to perform
level structured k-means and we cannot use high dimensional feature
vectors.
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Fig. 1. Performing k-means on a m-level structure with m = 2

3. DEEP LEARNING VECTOR QUANTIZER

With the level structured k-means based VQ method in Section 2,
an initial codebook and frame level codeword sequence can now be
obtained. DLVQ can then be performed based on it. DLVQ follows
the concept of LVQ which has been found useful in many fields such
as ASR [7] and text classification [14], and at the same time utilizes
the strength of deep learning.

3.1. Structure of DLVQ System

The proposed DLVQ in this paper utilizes DNN as a codebook
learner and vector quantizer. With the frame level label informa-
tion obtained from the initial quantizer, a DNN can be trained in a
similar way as in DNN based ASR [1]. The overall training struc-
ture was shown in Fig. 2. First, an initial codebook is learned by
k-means on training frames (no context frames are used). Then the
codeword for each frame is obtained by standard VQ. Finally, the
codeword is used as the class label for each frame to train a DNN
with cross-entropy as the optimization objective.

VQ based
on k-means

ot

| {z }
DNN

codeword

label

Fig. 2. Structure of Deep Learning Vector Quantizer

3.2. DNN Training

The input of the DNN was a splice of a central frame (whose label is
the label for the splice) and its n context frames on both left and right
sides, e.g., n = 8 or n = 10. The hidden layers were constructed
by sigmoid units and output layer is a softmax layer which has the
same number of nodes as the codeword number of the VQ initializer.
The basic structure of a deep neural network is shown in Fig. 3.
Specifically, the values of the nodes can be expressed as,

xi =

{
W1o

t + b1, i = 1

Wiy
i + bi, i > 1

, (1)

yi =

{
sigmoid(xi), i < n

softmax(xi), i = n
, (2)

where W1,Wi are the weight matrices and b1,bi are the bias vec-
tors; n is the total number of the hidden layers and both the sigmoid
and softmax functions are element-wise operations. The vector xi

corresponds to pre-nonlinearity activations and yi is the neuron vec-
tor at the ith hidden layer. The softmax outputs were considered as
the estimated codeword posteriors as in (3),

P (Cj |ot) = yn
t (j) =

exp(xn
t (j))∑

i

exp(xn
t (i))

, (3)

where Cj represents the jth codeword and yn(j) is the jth element
of yn in Fig. 3.
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Fig. 3. Basic Structure of a Deep Neural Network:Wi is weight
matrix at ith hidden layer, note that the bias terms are omitted for
simplicity.

DNN was trained by maximizing the log posterior probability
over the training frames. This is equivalent to minimizing the neg-
ative cross-entropy loss function. Let X be the whole training set
which contains N frames, i.e. x0

1:N ∈ X , then the loss w.r.t. X is
given by,

L1:N = −
N∑
t=1

J∑
j=1

dt(j) logP (Cj |ot), (4)

where P (Cj |ot) is defined in (3); dt is the label vector at frame t,
which is the “pseudo” one obtained from the k-means VQ initializer.
The loss objective function is minimized by using error back propa-
gation which is a gradient-descent based optimization method devel-
oped for the neural networks. Specifically, taking partial derivatives
of the loss objective function with respect to the pre-nonlinearity ac-
tivations of output layer xn will give us the error vector to be back-
propagated to the previous hidden layers,

εnt =
∂L1:N

∂xn
= yn

t − dt, (5)
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the backpropagated error vectors at previous hidden layer are thus,

εit =WT
i+1ε

i+1
t ∗ yi ∗

(
1− yi

)
, i < n (6)

where ∗ denotes element-wise multiplication. With the error vectors
at certain hidden layers, the gradient over the whole training set with
respect to the weight matrix Wi is given by,

∂L1:N

∂Wi
= yi−1

1:N (εi1:N )T , (7)

note that in above equation, both yi−1
1:N and εi1:N are matrices, which

is formed by concatenating vectors corresponding to all the training
frames from frame 1 to N , i.e. εi1:N = [εi1, . . . , ε

i
t, . . . , ε

i
N ] . The

batch gradient descent updates the parameters with the gradient in
(7) only once after each sweep through the whole training set and
in this way parallelization can be easily conducted to speedup the
learning process. However, Stochastic gradient descent (SGD) usu-
ally works better in practice where the true gradient is approximated
by the gradient at a single frame t, i.e. yi−1

t (εit)
T , and the param-

eters are updated right after seeing each frame. The compromise
between the two, the minibatch SGD, is more widely used, as the
reasonable size of minibatches makes all the matrices fit into GPU
memory, which leads to a more computationally efficient learning
process. In this work, we use minibatch SGD to update the parame-
ters.

To train the DNN by minimizing the cross-entropy objective
function will make DNN tend to retain the “labels” by its VQ ini-
tializer, that is, an “ideal” training cycle will let the DNN get exactly
the same VQ results with its initializer. But in the realistic training
procedure, it was observed that the frame accuracy is not high (below
50%) for the training and development set. This demonstrates that
DNN is not learning what exactly its initializer does but capturing
new information in the data.

3.3. Generative Pretraining of DNN

Training a neural network directly from the randomly initialized pa-
rameters usually results in a poor local optimum when performing
error back propagation, especially when the neural network is deep.
To cope with this, pre-training methods have been proposed for a
better initialization of the parameters [21]. Pre-training grows the
neural network layer by layer without using the label information.
Treating each pair of layers in the network as a restricted Boltzmann
machine (RBM), layers of the neural network can then be trained
using an objective criterion called contrastive divergence [21].

3.4. Getting “Bag of Words” Representation

After pre-training, the DNN can be trained by the error back prop-
agation method. The BoW representation of an audio clip is then
obtained by propagating frames of the clip through the trained DNN
and adding up all the output vectors as in Fig. 4. It is believed that the
deep learning framework can provide more abstract and useful data
representations among various learning methods [22]. Moreover, in
DLVQ, the context information of each central frame is utilized by
splicing context frames which will result in high dimensional feature
vector that k-means has a difficulty in handling. All the training data
can be used here, unlike for k-means we can only use a small por-
tion. The codeword posteriors output may also be more reasonable
than hard decision of a codeword. All these will further help DLVQ
get a good representation power.
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Fig. 4. Getting “Bag of Words” Representation by DLVQ

4. SUPPORT VECTOR MACHINES

In this paper, SVMs [10] with histogram intersection kernel (HIK)
[23] was used as a classifier in both the baseline and the proposed
system after having obtained the BoW representation of each audio
clip. SVMs are widely adopted in field of information retrieval. Its
dual formulation of soft margin version is shown in (8):

max

n∑
j=1

λj −
1

2

∑
i,j

λiλjyiyjk(xi,xj)

subject to 0 6 λi 6 C and
∑

λiyi = 0 (8)

The decision function is sign(h(x)), with h(x) defined in (9),

h(x) =

m∑
l=1

λlylk(xnew,xl), (9)

where xl is the support vector and xnew is the vector to be classified.
Various kernels k(xnew,xl) can be used in SVM, such as radial
basis function (RBF), and polynomial kernels [10]. In this paper the
HIK is employed. Given feature vector xnew and support vector xl,
the kernel is defined in (10),

k(xnew,xl) =

n∑
i=1

min(x(i)
new,x

(i)
l ), (10)

where n is the dimension of feature vector and x(i) means the ith

element of vector x. The HIK kernel shows a good performance in
object detection and video retrieval [23, 24].

5. EXPERIMENTS

5.1. Data Set and Evaluation Metric

We evaluate the proposed codebook learning method with a collec-
tion of 1873 videos from Columbia University [9]. The data were
all consumer videos from Youtube concerning 25 concepts, such as
dancing, wedding and so on. The training, development and eval-
uation sets contain 745, 378, and 750 clips, respectively. The stan-
dard 39-dimensional MFCC feature vectors with a 25ms window and
10ms shift were extracted from the sound tracks of these videos.

We use MAP [18] as our evaluation metric which is commonly
used in the information retrieval community. For retrieval systems
that return a ranked sequence of documents, it is desirable to con-
sider the order in which the returned documents are presented. AP
is defined as in (11).

AP =

∑R
r=1 P (r)×rel(r)

number of relevant documents
, (11)
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where r is the rank of the retrieved documents,R is the total number
of retrieved documents, P (r) is the precision at cut-off r in the list,
and rel(r) is an indicator function equals to 1 if the item at rank r
is a relevant document, and 0 otherwise. MAP for a set of queries
(each concept is a query in our task) is the mean of the AP scores for
each query.

MAP =

∑Q
q=1AP (q)

Q
(12)

There are 25 concepts in our experiment data set. Every one of
them is a query when we compute the MAP.

5.2. Experiment Setup and Results

To construct the baselines, we built two level-structrued k-means
VQ systems with 1024 (3 levels with 32, 8 and 4 clusters in each
level) and 4096 (4 levels with 32, 16, 4 and 2 clusters in each level)
codewords denoted by 1024 k-means and 4096 k-means in Table
1, respectively. The BoW vector representation of an audio clip is
obtained by counting each codeword’s occurrence in that clip.

DLVQ systems were constructed based on the pseudo codeword
labels generated by the baseline k-means systems. All DNNs use 7
hidden layers with 2048 nodes in each layer and the input is a splice
of the central frame and its 8 context frames. The output softmax
layer of each system has the same dimension as the codebook vo-
cabulary of its initializer VQ system, that is, 1024 and 4096, respec-
tively. We built the DNN systems based on Kaldi speech recognition
toolkit [25].

The following scheme is used for training the DNN: the param-
eter initialization is done by using layer by layer generative pretrain-
ing [21]. Then the network is discriminatively trained with cross-
entropy objective function using backpropagation. The mini-batch
size is set to 256 and the initial learning rate is set to 0.008. After
each training epoch, we validate the frame accuracy on the devel-
opment set, if the improvements is less than 0.5%, we shrink the
learning rate by the factor of 0.5%. The training process is stopped
after the frame accuracy improvement is less than 0.1%.

In actual training procedure, the DNN that based on 1024-
codeword k-means achieved frame accuracy 47.94%, 33.10% in
training and development set, respectively; the one based on 4096-
codeword k-means achieved 39.17% and 24.53%. It can be observed
in Fig. 5 that the changing tends of the frame accuracies in training
and development set are similar and are mostly increasing. This
shows that cross-entropy training indeed makes the DNN mimic
its VQ initializer (retaining the “labels” by k-means VQ); but from
the final frame accuracies achieved (all below 50%), it could be
concluded that the DNN is not learning what exactly its initializer
does but capturing new information. After DNN is trained, the
BoW representation of an audio clip is then obtained by propagating
frames of the clip through the trained DNN and adding up all the
output vectors. For both the baseline and proposed systems, the
BoW vector representation for each clip was normalized to make
the attributes of the vector sum to 1 as a histogram. SVMs with HIK
kernel were used as the classifiers.

The experimental results are listed in Table 1. It can be seen that
DLVQ gets about 4.5% relative gain over the k-means baseline in
MAP. By a simple late fusion of the two results from the baseline
and proposed systems, an about 10.5% relative gain can be observed
in Table 1 which shows that DLVQ learns some complementary in-
formation not fully captured by the k-means system. The simple late
fusion scheme is just a weighted sum of the classifier scores of the
two systems based on their AP scores on the development set. This

Fig. 5. DNN Training: Frame accuracies on both training and devel-
opment set with 1024-codebook and 4096-codebook as the function
of training epochs

1024 k-means 4096 k-means
Baseline 0.3851 0.3868
DLVQ 0.4031 0.4039

Late fusion 0.4255 0.4281

Table 1. MAPs of baseline system built using VQ, the proposed
system with DLVQ and the fused system

promising performance gain shows that DLVQ does help enhance
the representative power of VQ based BoW vectors.

6. CONCLUSION AND FUTURE WORK

In this paper we introduce a discriminative way to perform LVQ us-
ing a deep learning framework to learn a good VQ representation
from the baseline initializer VQ systems. It can be seen as an good
example of the hybrid deep learning architecture [26]. We have
demonstrated that the proposed DLVQ system captures new infor-
mation and gets a quite promising relative performance improvement
of 10.5% when fused with its initializer k-means VQ system. This
gain, we believe, is benefited from the deep structure of the system
which can provide more abstract and useful data representations.

In our efforts to build the baseline VQ systems, inspired by [27],
we find that deep autoencoder [21, 28] with very narrow middle bot-
tleneck layer can potentially be a good vector quantizer. We would
like to further explore this interesting point and try to integrate it into
the DLVQ framework. For DNN training, there are still many points
to be improved. We would also like to test DLVQ’s performance in
other fields, such as computer vision, and investigate the theoretical
relationship between DLVQ and its initializers.
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