
CONTEXTUAL DOMAIN CLASSIFICATION IN SPOKEN LANGUAGE UNDERSTANDING
SYSTEMS USING RECURRENT NEURAL NETWORK

Puyang Xu, Ruhi Sarikaya

Microsoft Corporation, Redmond WA 98052, USA
{puyangxu, ruhi.sarikaya}@microsoft.com

ABSTRACT

In a multi-domain, multi-turn spoken language understanding
session, information from the history often greatly reduces
the ambiguity of the current turn. In this paper, we apply
the recurrent neural network (RNN) to exploit contextual in-
formation for query domain classification. The Jordan-type
RNN directly sends the vector of output distribution to the
next query turn as additional input features to the convo-
lutional neural network (CNN). We evaluate our approach
against SVM with and without contextual features. On our
contextually labeled dataset, we observe a 1.4% absolute
(8.3% relative) improvement in classification error rate over
the non-contextual SVM, and 0.9% absolute (5.5% relative)
improvement over the contextual SVM.

Index Terms— Recurrent neural network, contextual do-
main classification

1. INTRODUCTION

Spoken language understanding (SLU) applications are be-
coming increasingly important in our daily lives. Many
portable devices such as smartphones have personal assis-
tants that are built with SLU technologies. SLU typically
involves determining the user intent and extracting relevant
semantic slots from the natural language sentence. In a com-
monly used architecture, a sentence is first classified into one
of the supported domains, after that domain dependent intent
analysis and slot filling (i.e. entity extraction) are carried out.

In such pipelines, domain classification is the first step of
the semantic analysis. While it is a standard classification task
and seemingly less complex than other semantic analysis such
as entity extraction, the errors made by a domain classifier
are usually much more visible – they often lead to clearly
wrong system responses such as invoking a wrong application
because it routes the query to wrong intent and slot models for
semantic analysis. The focus of this work is to improve the
accuracy of domain classification by exploiting the session
context.

We would like to thank Zhaleh Feizollahi for preparing the dataset, and
Yangyang Shi for helpful discussions.

We are particularly interested in the multi-turn multi-
domain classification problem in the context of a conversa-
tional session, in which the user issues a series of consecutive
queries to the system. An example of a session consisting of
5 queries (T1 through T5) is shown below:

T1: How is the weather in Houston (weather domain)
T2: how about Orlando (weather domain)
T3: am I free tomorrow (calendar domain)
T4: find hours for disney world (places domain)
T5: get driving directions (places domain)

In this example, the user starts with two weather queries,
then checks the calendar to make sure she has free time, and
eventually asks the system to provide information about dis-
ney world, which is potentially her travel destination for to-
morrow. In such a session, we often observe that the users
tend to follow an intuitive and predictable thought process, re-
sulting in exploitable patterns in the domain sequence. It can
be particularly useful when the query is short and ambiguous
such as T2 in the above example – ”how about Orlando” can
have very different domain interpretations depending on the
previous query turn. The contextual modeling of the query
domains reduces the likelihood of abrupt switches between
domains, leading to a more coherent interaction during an
SLU session.

In [1], it was shown that contextual information, more
specifically the intent label of the previous turn, can improve
the intent classification of the current turn using the standard
support vector machine (SVM) classifier. This work shares
the same objective – exploiting information from previous
turns in a query session to improve the classification of the
current turn. However, we focus on domain classification,
and instead of using SVM with simple handcrafted features,
we use the recurrent neural network (RNN).

The RNN is a special class of neural network (NN) with
feedback connections from one time stamp to the next. Its
ability to succinctly keep track of the history makes it par-
ticularly suitable and powerful for modeling temporal depen-
dencies in sequential data.

The RNN based language model (LM) is one of the bigger
successes of using RNN in recent years [2, 3] – on top of the
standard feed-forward NN based LM [4, 5], recurrent con-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 136

nections were introduced and achieved impressive improve-
ment in LM quality. RNN was more recently proposed for
the slot filling task in the SLU area [6, 7], in which the task
is to predict the slot tag for each word in the sequence. In
addition to the success of using RNN, recent years have also
witnessed the surge of interests in general NN based tech-
niques for speech and language applications [8, 9, 10], some
of them are specifically proposed for the utterance classifi-
cation tasks in SLU, but limited to using features from the
current turn [11, 12, 13].

Compared with previous related work, this paper targets
a novel problem that has rarely been looked at – contextual
domain classification for a multi-turn multi-domain SLU task.
We also extend the work in [1] by employing RNN to extract
features from the session context.

2. THE BENEFIT OF CONTEXT

For natural language conversations such as the examples
shown in the previous section, features extracted from the
current turn are often insufficient for statistical models to
determine the type of the query accurately. This becomes in-
creasingly true as the user dives deeper into the conversation
and the correct semantic interpretation relies more and more
on the session context.

Before presenting systematic experimental results, we
would like to present a set of oracle experiments measuring
the classification error rate of each turn and the potential gains
at each turn by adding the previous domain label as a feature.
The first turn has no informative session context and usually
does not benefit from contextual modeling. As demonstrated
in Table 1, the error rate using only non-contextual (n-gram)
features increases monotonically as the conversation evolves,
while the room for improvement provided by the previous
domain label also grows monotonically (25% relative at turn
5).

Turn ID n-gram only + true prev dom
1 12.3 13.1 (+6.5%)
2 16.1 13.5 (-16.1%)
3 16.4 13.6 (-17.1%)
4 18.8 15.7 (-16.5%)
5 20.3 15.3 (-24.6%)

AVG 16.8 14.5 (-13.7%)

Table 1. Per-turn classification error rate (%) before and af-
ter adding the TRUE previous domain label as feature (SVM).

3. CONVOLUTIONAL NEURAL NETWORK BASED
DOMAIN CLASSIFICATION

Before presenting our RNN based model, we first describe
its non-recurrent version based on the convolutional neural

network (CNN). While other NN architectures for semantic
classification exist [11, 12, 13], we like to present this work in
the context of CNN feeding off our previous experiences [14,
15]. The choice of using CNN as opposed to others is not
critical to the main theme of this work – recurrent connections
can also be added to other NN based models. The comparison
of them is out of the scope of this paper.

CNN has been used extensively for various learning tasks.
By sharing the local feature extractor, it is able to reduce the
number of parameters and capture some of the translational
invariance in the input data. Longer range features can be
extracted by stacking the CNN layers.

Using CNN as a multitask learning framework for natural
language processing (NLP) was first described in [9]. The
proposed architecture is a general technique for structured and
non-structured classification tasks. For the purpose of non-
structured classification (such as domain classification), the
network structure is illustrated in Figure 1.

Fig. 1. CNN based classification.

As commonly done for NN based NLP techniques, each
word is associated with a continuous vector. Such vectors, ini-
tialized either randomly or from some other modeling tasks,
are concatenated to form the input layer x to the network. The
transform T spans over each n-gram window and slides over
the whole sentence. The resulting feature vectors in h usu-
ally go through some non-linear operation (such as tanh) be-
fore the max-pooling step produces a fixed-dimensional fea-
ture vector hm. Finally, the transform β constructs a multino-
mial output distribution at the softmax layer o.

4. ADDING RECURRENT CONNECTIONS

Adding recurrent connections to the proposed CNN based ar-
chitecture is no different from adding them to the standard
NN models. Information from the history can be retained by
appending to the current input feature layer either the previ-
ous hidden feature layer hm or the previous output layer o.
Depending on the source of the added features, the result-
ing architectures are called the Elman-type RNN [16] and the
Jordan-type RNN [17] respectively.

137

In [7], it was shown that for slot filling, the Jordan-type
RNN (propagating the output layer) gives slightly better re-
sults. While we have not compared the two types of archi-
tectures in our experiments, the Jordan-type RNN does have
complexity advantages for our purpose – in the domain clas-
sification task that we are dealing with, the number of output
labels is less than 10, which is significantly smaller than the
typical size of the hidden feature layer (e.g. 100), resulting
in much reduced complexity for computing the network. The
Jordan-type recurrent CNN is depicted in Figure 2.

Fig. 2. CNN based classification with recurrent connections.

As illustrated by the figure, cycles are created in the net-
work by connecting the output layer with each input vector
in x, as well as the hidden layer hm – the feature vectors
in x and hm are augmented with the network output vector
from the previous time stamp, the linear transforms T and β
are also expanded correspondingly. When there is no history
available (e.g. sentences at the first turn), the augmented part
of the vector is set to zero.

Note that the previous model prediction is fed into the net-
work as a multinomial vector, as opposed to one single dis-
crete feature indicating the predicted label from the previous
turn (as done in [1]). Such softened features can help alle-
viate the negative impact of inaccurate model predictions for
the previous turn.

The training of the proposed model can follow the same
procedure for training general RNN based models – back
propagation can be carried out on the unfolded network,
which is commonly known as the back propagation through
time (BPTT).

5. EXPERIMENTAL RESULTS

5.1. The Dataset

Our dataset contains 1461 natural language query sessions,
each session consists of 5 turns on average. The queries in
each session are sent to the SLU system in order. The ex-
amples of such sessions are demonstrated in section 1. The
queries can be categorized in 9 different domains, ranging

from checking weather, calling and texting, to setting re-
minders. The goal of our modeling task, is to assign the
correct domain label to each query in the session.

Since we have limited amount of data, to reduce the vari-
ance of our evaluation results, all experiments are conducted
in a cross-validation fashion. The dataset is partitioned into
10 fold. To test on each fold, the model is trained on 8 of
the other 9 folds while the remaining 1 fold is used as the
development set to tune various model settings and track the
progress of online training.

5.2. Baseline Approaches

To compare with our RNN based approach, support vector
machine (SVM) is our primary baseline. We use our inter-
nal SVM tool for all the experimentation. SVM is a power-
ful classification technique with both intuitive interpretation
and strong theoretical guarantee. In essence, SVM is a linear
model with regularized hinge loss as the optimization objec-
tive. In the linear modeling framework, features are usually
handcrafted and the models are expressed as the dot product
between the feature vector and the corresponding weight vec-
tor.

For text classification in general, n-gram features are
commonly used as the baseline. For contextual classification,
information from the history can also be encoded as feature
constraints in the linear model. In [1], the predicted label
from the previous turn was added as an additional feature and
led to noticeable gains – this is another baseline approach we
compare with.

While the kernel trick is often believed to be able to over-
come the linear nature of the SVM model, we have found the
basic linear SVM yields the best results for our experiments.
Linear models in general are sometimes perceived as shallow
learners [18], as opposed to NN based models in which more
complex dependencies can be discovered via multiple layers
of feature extraction. To compensate for the alleged “shal-
lowness” of the linear SVM, we add a product feature directly
modeling the joint effect of the previous domain label and the
n-grams of the current turn. This can be perceived as context
dependent n-gram modeling. For each domain label of the
previous turn, we have a different set of n-gram features in
addition to the shared n-gram features. It is worth pointing
out that in our RNN model, such dependencies between pre-
vious label and n-grams are not explicitly defined – they are
automatically discovered through NN layers.

For such SVM models using previous predictions as fea-
tures, it is not possible to obtain the accurate contextual fea-
tures during training – the model prediction will not be avail-
able before the model is fully trained. Instead of training on
the true label of the previous turn and causing mismatch be-
tween training and testing, the prediction label during training
is provided by a non-contextual classifier, namely an SVM
that uses only n-gram features from the current turn. Such

138

approximation is also adopted in [1].

5.3. RNN implementation

As we have described, the initialization of the word vectors
can be either random or obtained from other tasks. The latter
is essentially the pretraining step found to be crucial to the
recent success of deep learning [19]. We have also found it
useful in our experiments. Specifically, we initialize the word
vectors using the SENNA embedding [20] obtained from an
LM task on Wikipedia. The SENNA embedding provides a
50-dimensional vector for each one of the 130K words in its
vocabulary. It covers 85% of the words on our dataset, the
uncovered words are initialize randomly.

The hidden layer size for each convolutional unit is set it
to be 100 for the experiments presented here. We use the rec-
tifier activation function for the hidden units, and the dropout
technique [21] is applied to the hidden features (with proba-
bilty 0.5).

By design, the recurrent connections send the output dis-
tribution vector to the next turn. However, we have found that
during training, sending a one-hot vector indicating the true
previous label yields similar results. The benefit is that since
the recurrent features are now constant, it generates no error
signal for the previous turn. In other words, BPTT only has to
be done for the current turn, thus greatly reducing the train-
ing complexity. We want to emphasize that sending the true
previous label only happens for training – during test time,
we still send the multinomial vector predicted by the model
to the next turn.

5.4. Error Rate Comparisons

Table 2 demonstrates the domain classification error rate of
the proposed RNN approach as well as the baseline tech-
niques we described.

Model Error rate (%)
SVM trigram only 16.8

SVM trigram + pdom 16.6
SVM trigram + pdom + CD 1g 16.3

RNN 15.4

Table 2. Domain classification error rate (10-fold cross vali-
dation) of using RNN compared with using SVM with various
feature sets. ’pdom’ indicates the previous domain label; CD
1g indicates the context dependent unigram feature.

As shown in the table, the RNN approach improves over
the non-contextual SVM baseline by 1.4% absolute, 8.3% rel-
ative. Even against the SVM with contextual features, the
RNN model yields a 0.9% absolute reduction (5.5% relative)
in classification error rate. It is also worth mentioning that
adding previous two domain labels as features for SVM only
led to negligible additional improvement.

For the SVM models, the fact that the previous model
prediction contains errors diminishes the potential gains sub-
stantially. The same problem also affects the RNN model,
although the impact tends to be smaller because the predicted
distribution (a multinomial vector) is used as features instead
of the predicted label. According to Table 3, the prediction er-
ror costs about 2% absolute improvement for SVM, and 1.5%
for RNN.

Model True Predicted
SVM trigram only 16.8 16.8

SVM trigram + pdom 14.5 16.6
SVM trigram + pdom + CD 1g 14.3 16.3

RNN 14.0 15.4

Table 3. Difference in classification error rate of using true
and predicted previous label.

As we have shown in Table 1, later turns in a user ses-
sion tend to have higer classification error rate. This also
resulted in less and less accurate contextual features as the
session evolves. On our multi-turn dataset, the negative im-
pact of prediction errors appear to grow larger in later turns.
As the Table 4 shows, while the first turn (for which there is
no informative history) is not hurt by using the predicted fea-
tures, from turn 2 to turn 5, we see a monotonic increase in
the difference between using true and predicted features for
RNN (from 1% to 2.6%). This problem is also reflected in
the comparison between RNN and SVM: At turn 5, for which
the model prediction is presumably the least reliable, there is
no gain of using RNN over the SVM baseline. While the two
approaches are also identical at turn 1, the benefit of using
RNN is obvious at turn 2, 3, 4, and peaks at turn 3.

Turn ID RNN True RNN Pred SVM Pred
1 13.8 12.9 12.9
2 13.1 14.1 14.6
3 12.5 14.6 16.7
4 14.7 16.9 18.4
5 16.1 18.7 18.7

Table 4. Per-turn comparison of RNN and SVM (column 3
and 4), as well as using true and predicted label for RNN
(column 2 and 3).

6. CONCLUSIONS

We employed the recurrent neural network for contextual do-
main classification in a multi-turn multi-domain SLU session.
The proposed RNN approach directly uses the previous model
prediction as additional features for the current turn. The re-
sulting model outperforms SVM with contextual features by
significant margins.

139

7. REFERENCES

[1] A. Bhargava, A. Celikyilmaz, D. Hakkani-Tur, and
R. Sarikaya, “Easy contextual intent prediction and slot
detection,” in INTERSPEECH, 2013.

[2] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and
S. Khudanpur, “Recurrent neural network based lan-
guage model,” in INTERSPEECH, 2010.

[3] I. Sutskever, J. Martens, and G. Hinton, “Generating
text with recurrent neural networks,” in ICML, 2011.

[4] Y. Bengio, R. Ducharme, P. Vicent, and C. Jauvin, “A
neural probablistic language model,” Journal of Ma-
chine Learning Research, vol. 3, pp. 1137–1155, 2003.

[5] H. Schwenk, “Continuous space language model,”
Computer Speech and Language, vol. 21, pp. 492–518,
2007.

[6] K. Yao, G. Zweig, M. Hwang, Y. Shi, and D. Yu, “Re-
current neural networks for language understanding,” in
INTERSPEECH, 2013.

[7] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investiga-
tion of recurrent-neural-network architectures and learn-
ing methods for spoken language understanding,” in IN-
TERSPEECH, 2013.

[8] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context depen-
dent pretrained deep neural networks for large vocabu-
lary speech recognition,” IEEE Transactions on Audio,
Speech and Language Processing, vol. 20, pp. 30–42,
2012.

[9] R. Collobert and J. Weston, “A unified architecture for
natural language processing: Deep neural networks with
multitask learning,” in ICML, 2008.

[10] A. Deoras and R. Sarikaya, “Deep belief network based
semantic taggers for spoken language understanding,”
in INTERSPEECH, 2013.

[11] R. Sarikaya, G.E. Hinton, and B. Ramabhadran, “Deep
belief nets for natural language call-routing,” in
ICASSP, 2011.

[12] G. Tur, L. Deng, D. Hakkani-Tur, and X. He, “Towards
deeper understanding deep convex network for semantic
utterance classification,” in ICASSP, 2013.

[13] L. Deng, G. Tur, X. He, and D. Hakkani-Tur, “Use of
kernel deep convex networks and end-to-end learning
for spoken langauge understanding,” in IEEE SLT, 2012.

[14] P. Xu, S. Khudanpur, M. Lehr, E. Prud’hommeaux,
D. Glenn, N. Karakos, B. Roark, K. Sagae, M. Saraclar,
I. Shafran, D. Bikel, C. Callison-Burch, Y. Cao, K. Hall,

E. Hasler, P. Koehn, A. Lopez, M. Post, and D. Riley,
“Continuous space discriminative language modeling,”
in ICASSP, 2011.

[15] P. Xu and R. Sarikaya, “Convolutional neural network
based triangular crf for joint intent detection and slot
filling,” in IEEE ASRU, 2013.

[16] J. Elman, “Finding structure in time,” Cognitive Sci-
ence, vol. 14, 1990.

[17] M. Jordan, “Serial order: A parallel distributed process-
ing approach,” Tech. Rep. No. 8604, San Diego: Uni-
versity of California, Institute for Cognitive Science.

[18] Y. Bengio and Y. Lecun, “Scaling learning algorithms
towards ai,” Large-Scale Kernel Machines, 2007.

[19] G. Hinton, S. Osindero, and Y. Teh, “A fast learning
algorithm for deep belief nets,” Neural Comput., vol.
18, pp. 1527–1554, 2006.

[20] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa, “Natural language pro-
cessing (almost) from scratch,” Journal of Machine
Learning Research, 2011.

[21] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Improving neural networks by
preventing co-adaptation of feature detectors,” arXiv,
2012.

140

