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ABSTRACT 

There is potential for the use of mobile phones to remotely 

identify patients with a high risk of heart conditions using 

automated auscultation. However, accurate heart sound 

analysis is dependent on the quality of heart sound 

recordings. This paper investigates the signal quality 

classification of phonocardiograms (PCGs) recorded on two 

devices (a 3M Littmann 3200 electronic stethoscope and an 

iPhone 3G). These recordings were professionally annotated 

and classified using a support vector machine (SVM) and a 

combination of ten signal quality metrics computed from 

each recording as input features. One third of all mobile 

phone-recorded PCGs were found to be of high quality. The 

classifier was able to distinguish good and bad-quality 

iPhone recordings with 87.0% accuracy, the Littmann 

recordings with accuracy of 76.4% and the combined set 

with accuracy of 85.6% on unseen test data. Therefore, the 

quality of PCGs made with a range of stethoscopes can be 

accurately classified using this technique. 

 

Index Terms— Signal quality, phonocardiogram, 

mobile health, classification 

1. INTRODUCTION 

Mobile health has the potential to transform healthcare in 

the developing world [1] due to the high prevalence of 

mobile phones [2], the shortage of healthcare workers, poor 

infrastructure and inadequate training [3], [4].  

Rheumatic heart disease (RHD), the leading cause of 

heart failure in children and young adults worldwide [5], is 

one condition that could potentially be monitored using a 

low-cost, mobile stethoscope. This condition, most 

prevalent amongst children of low socio-economic status in 

sub-Saharan Africa [6]–[8] results in heart murmurs that are 

almost always audible during auscultation [9]. A mobile 

phone-based automatic auscultation device has the potential 

to identify those individuals with a high risk of having RHD 

while not requiring expert training or expensive equipment. 

This study investigated the feasibility of using a mobile 

phone to record the heart sounds of patients and classifying 

the quality of these recordings. Mobile phones could be used 

by untrained healthcare workers to record heart sounds, or 

phonocardiograms (PCGs), in the field, provided automated 

real-time feedback was given to them to ensure the 

recording of high-quality signals. Automated analysis of 

such signals could be used to identify high-risk patients in a 

rural or primary care setting. 

2. RELATED WORK 

Cardiac auscultation using a mobile phone has previously 

been investigated. Kuan developed a low-cost home-made 

stethoscope using a soup ladle (similar to the egg-cup design 

used in this study) and a low-cost mobile phone hands-free 

kit [10]. Chen et al. analysed the heart sounds recorded on a 

HTC G1 and an iPhone 3G [11]. However, these authors did 

not incorporate any signal quality analysis. 

Methods for assessing the signal quality of heart sound 

recordings have been investigated before. Tosanguan et al. 

[12] and Kumar et al. [13] both found periods of PCGs that 

were of low noise. However, they did no classification of 

whether these recordings were of diagnosable quality. 

In only one publication was there the classification of the 

signal quality of PCG recordings [14]. These authors 

classified the signal quality of electronic stethoscope 

recordings by comparing various features against threshold 

values. However, many important details and values are 

omitted from their analysis, with the training and testing of 

their classification performed on the same data.  

This study builds on previous work by developing a 

robust classifier for PCG signal quality, able to differentiate 

the signal quality of recordings from multiple devices.  

3. METHOD 

3.1. Data Collection 

This study was approved by the Human Research Ethics 

Committee based at the Health Science Faculty of 

University of Cape Town (HREC REF: 568/2010). It was 

conducted in the Cardiac Clinic at Groote Schuur Hospital 

in Cape Town, South Africa. There were 150 consenting 

participants recruited for the study and each participant was 
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assigned a unique numeric identifier. Of the 150 patients 

recruited, 100 had valve replacements (with a mixture of 

natural and prosthetic valves), 25 had had congestive heart 

failure, 12 had pacemakers and 11 had congenital disorders. 

All recordings were made by a non-medically trained 

research assistant in order to replicate the role of an 

untrained healthcare worker. The recordings were 

performed with the patient in a supine position, after the 

patient had been resting for five minutes. Sixty second 

recordings were made with each of the PCG recording 

devices. 

Two different devices were used to record PCG data 

from each patient: The first was a 3M Littmann 3200 

electronic stethoscope. This device recorded PCGs at a 

sampling frequency of 4 kHz and an amplitude resolution of 

16 bits. 

The second PCG recording device used was an iPhone 

3G mobile phone which recorded PCG data at 44.1 kHz. To 

ensure adequate coupling between the chest and 

microphone, a stethoscope attachment, based on the work of 

Kuan [10], was made by placing the microphone of a 

standard iPhone hands-free kit into the neck of a metal egg-

cup. A rubber seal was attached to the outer rim to ensure an 

air-tight contact between the cup and the patient’s chest. The 

attachment is shown in Figure 1. The frequency response of 

the iPhone 3G [15] has an almost flat response even down to 

low frequencies, leading to minimal distortion, as heart 

sound frequencies range from 10-1000 Hz [16]. 

3.2. Signal Quality Annotations and Data Exclusion 

The PCGs were manually annotated by three cardiologists 

and one researcher. Each annotator gave each recording a 

score of one to five based on the diagnostic quality of the 

recording, using the labelling scheme shown in Table 1. 

Any PCG with an average annotated score of above two and 

below four was excluded from further analysis as an 

ambiguous class. This was done to exclude ambiguous 

recordings, neither of high or low enough quality to be 

labelled as such. Recordings with signal quality annotations 

lower or equal to two were classed as good quality and those 

higher or equal to four were classed as bad quality for 

binary classification purposes. The distribution of the 

annotations for the different recording devices can be seen 

in Figure 2.  

Due to the lack of bad quality Littmann recordings, 

when these recordings were classified by themselves, 

recordings with an average annotated score between 1.5 and 

2.5 were classed as the ambiguous class, resulting in 66, 57 

and 27 good-, ambiguous- and bad-quality recordings 

respectively. Examples of good and bad-quality recordings 

on the iPhone can be seen in Figure 3 and Figure 4. 

3.3. Preprocessing 

Each iPhone PCG recording was down-sampled to 4000 Hz 

using a polyphase anti-aliasing filter in order to match the 

Littmann recordings. The frequency content of all heart  

 

Figure 1: Hand-made stethoscope, made with an aluminium egg-

cup and the microphone from a mobile phone hands-free kit 

plugged into an iPhone 3G. 

Table 1: PCG labelling scheme based on diagnostic quality. 

Quality 

Label 

 

Quality Description 

1 

Excellent - like auscultation. An unequivocal 

diagnosis can be made, with little to no noise on 

the recording. 

2 

Good - like auscultation with noise but still easily 

heard. Interpretable but some noise present which 

means expert judgement is needed 

3 
Borderline - very faint and poorly heard heart 

sounds and fairly difficult to interpret. 

4 Poor - mostly noise with some heart sounds. 

5 Awful - no heart sounds, only noise. 

 

sounds, normal and pathological, ranges from 10-1000 

Hz [16] and hence the Nyquist-Shannon sampling 

criterion [17] is satisfied.  

3.4. Signal Quality Indices 

Ten signal quality indices (SQIs), selected from review of 

the literature, were calculated for each recording. Several of 

these SQIs were based on the autocorrelation of the 

envelope of the PCG recording. The envelope of each 

recording was estimated using the Hilbert transform in a 

similar manner to [13], [18], [19].  

The autocorrelation [20] of the Hilbert envelope was 

then calculated. The autocorrelation is the cross-correlation 

of a signal with itself, which accentuates repeating patterns 

in noisy signals. The autocorrelation waveform was then 

low-pass filtered using a forward-backward 10 Hz cut-off, 

second-order infinite impulse response (IIR) low-pass filter, 

ensuring zero phase distortion. Examples of the 

autocorrelation waveforms of good- and bad-quality PCG 

recordings can be seen in Figure 5. The prominent peaks, 

produced at instances of high correlation between heart 

sounds, can be clearly identified in the solid line in Figure 5.  
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Figure 2: Distribution of the signal quality annotations for the 

Littmann and iPhone PCG recordings. The total number of good, 

bad and ambiguous, excluded recordings can be seen. 

 

Figure 3: A good-quality iPhone 3G PCG recording with the first 

(S1) and second (S2) heart sounds identified. 

 

Figure 4: A bad-quality PCG recording made on the iPhone 3G, 

with large amounts of noise contaminating the signal 

The signal quality indices tested for their effectiveness 

of signal quality classification of the PCG recordings are 

described in Table 2. 

3.5. Support Vector Machine-based Classification 

In order to avoid bias in the classification, the two classes 

(good- and bad-quality) of recordings were randomly split 

into a training set (2/3 of the recordings) and a test set (1/3 

of the recordings), with the same number of good and bad-

quality recordings being allocated to each set. In the case of  

 

 

Figure 5: Examples of the autocorrelations of a good- (solid grey 

line) and bad-quality (dashed black line) PCGs. 

Table 2: Description of the ten signal quality indices used in 

classification of PCG signals 

SQI Number 

Signal 

Quality 

Index 

Description 

1: m=1, r=0.01 

2: m=2, r=0.01 

3: m=1, r=0.001 

4: m=2, r=0.001 

      
  

The sample entropy [21] of the 

autocorrelation function, with 

  {   }  being the length of 

an epoch being measured, while 

  {          } is a threshold 

value. 

5      

The fourth moment (kurtosis) of 

the autocorrelation waveform 

(as used in ECG signal quality 

classification [22]).  

6        

The minimum ratio of the 

second to first singular value 

from the singular value 

decomposition (SVD) of 

varying window sizes of the 

autocorrelation function - 

adapted from [13]. 

7       
The Hjorth activity [23] or 

signal power of the 

autocorrelation function 

8        
The ratio of the signal power in 

the PCG from 0-240 Hz to 240-

1000 Hz. 

9      
The variance of the 

autocorrelation function 

10       

The correlation coefficient 

between the autocorrelation 

waveform and a fitted, rectified 

cosine waveform.  

 

classifying the Littmann and iPhone recordings together, the 

number of recordings from each device was balanced.  

The input features were normalised by subtracting the 

mean and dividing by the standard deviation for each SQI in 

the training set. The mean and standard deviation values 

from the training set were used to normalise the test data. 

A support vector machine (SVM) classifier with a Gaussian 

kernel [24] was used as a classification algorithm, using the 

libSVM library [25]. The SVM was chosen over other 
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machine learning algorithms as the SVM training procedure 

always produces a global optimum due to the fact that 

training the classifier is a convex optimization problem [26]. 
A SVM with a Gaussian kernel has two parameters,  , 

which controls the width of the Gaussian, and  , which 

controls how strict the classifier is, that can be varied. These 

were set using cross-validation: 

The optimal SVM parameters were found by performing 

an exhaustive grid search over   (from 0.1 to 2),   (from 0.5 

to 5), the number of features (from 1 to 10) and the 

combination of features when using leave-two-out (a good- 

and bad-quality pair of recordings) cross-validation on the 

training set. The parameters which resulted in the highest 

average classification accuracy during cross-validation were 

then used to train the SVM on all the training data. Table 3 

shows the number of recordings in the training and test sets 

for each of the classification groups.  

4. RESULTS 

The results of the cross-validation optimisation can be seen 

in Table 4. This table shows the highest average 

classification accuracy and standard deviation ( ) of the 

accuracies found over the cross-validation. The standard 

deviation gives an indication of how widely dispersed the 

classification results were using the chosen  ,   and 

features. The average classification results when using these 

optimised parameters on the separate test set can be seen 

in Table 5. This table illustrates the classification accuracy 

on the training set as well as the test set, in order to give an 

indication of over-training.  

5. DISCUSSION AND CONCLUSION 

From the distribution of the annotated quality of recordings 

in Figure 2 it can be seen that 52 of the 150 iPhone 

recordings were found to be of high, diagnosable quality. 

This illustrates that a mobile phone equipped with a low-

cost stethoscope attachment can be used to record high-

quality PCG signals by an untrained healthcare worker. 

It can be seen in Table 4 that the classification across 

datasets is not highly dependent on  ,  , the number and 

selection of features, as ranges of these resulted in the same 

classification accuracy. However, the use of between three 

and eight features across all datasets resulted in the best 

accuracy. This is expected, due to the risk of over-fitting 

with small datasets when using many features. The most 

frequently selected features were sample entropy and the 

correlation between the autocorrelation and a fitted cosine. 

These parameters are a measure the periodicity of the 

repetitive peaks in the autocorrelation function of good 

quality heart sound recordings.  

 

 

 

 

 

Table 3: Number of recordings for each classification group 

Classification 

Group 

No. of training 

recordings 

No. of test 

recordings 

iPhone 3G 64 32 

Littmann 36 18 

Combined 64 32 

Table 4: Highest average classification accuracy on the leave-two-

out cross-validation on the training set, with the features resulting 

in highest accuracy. 

 iPhone Littmann Combined 

Highest average 

accuracy (%) 
92.2 88.9 96.93 

  of accuracies 18.4 21.4 12.3 

  1-2 0.6-1.3 1.3-2 

  3-5 2-4 1-3 

No. of Features 3-6 3-6 5-8 

Most frequently 

selected features (see 

Table 2) 

1,2,4,6,10 2,4,7,9,10 4,5,6,10 

Table 5: Average classification results on train and test sets when 

using the optimised parameters found on the training sets (%). 

  Accuracy Sensitivity Specificity 

iPhone 
Train 96.0 96.8 95.2 

Test 87.0 87.4 86.7 

Littmann 
Train 93.0 86.2 1 

Test 76.4 63.9 88.9 

Combined 
Train 97.8 95.7 1 

Test 85.6 87.5 83.4 

 

Table 5 illustrates the success of this technique on the 

test set. The Littmann recordings had the lowest 

classification accuracy, explained by the reduced range of 

good-, ambiguous- and bad-quality data (see Section 3.2) 

and the difficulty in differentiating between generally good-

quality data. The superior training results across all devices 

indicate the possible presence of over-training. 

Therefore, it can be concluded that a mobile phone 

equipped with a low-cost stethoscope attachment is capable 

of recording high-quality PCG signals. The poor-quality 

recordings can be classified with a high degree of accuracy 

using this technique, which could be used to ensure that an 

untrained healthcare worker records high-quality PCGs 

before they are analysed further. However, the classification 

needs to be made more specific in order to identify all poor-

quality recordings, while being careful not to exclude 

abnormal patient recordings due to poor-quality 

classification.  

A limitation of this work is the reliance of many of the 

SQIs on the magnitude of peaks in the autocorrelation 

waveform, which is dependent on the periodicity of the PCG 

signal. Therefore, any irregular heartbeats, due to 

arrhythmias or fluctuations in heart rate will affect the SQI 

values. This could be improved by using beat-to-beat quality 

metrics, as used in ECG signal quality classification [27]. 
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