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ABSTRACT

In this article, we introduce a novel approach for nonlinear acoustic

echo cancellation based on a combination of particle filtering and

evolutionary strategies. The nonlinear echo path is modeled as a

state vector with non-Gaussian probability distribution and the rela-

tion to the observed signals and near-end interferences are captured

by nonlinear functions. To estimate the probability distribution of

the state vector and the model parameters, we apply the numerical

sampling method of particle filtering, where each set of particles rep-

resents different realizations of the nonlinear echo path. While the

classical particle-filter approach is unsuitable for system identifica-

tion with large search spaces, we introduce a modified particle filter

to select elitist particles based on long-term fitness measures and to

create new particles based on the approximated probability distribu-

tion of the state vector. The validity of the novel approach is ex-

perimentally verified with real recordings for a nonlinear echo path

stemming from a commercial smartphone.

Index Terms— Echo cancellation, nonlinear AEC, system iden-

tification, particle filter, evolutionary strategies

1. INTRODUCTION

The problem of acoustic echo cancellation (AEC) for applications

like teleconferencing and hands-free communication systems has

been investigated for several decades and is still an active research

topic. While linear AEC has reached a mature state as vital part

of today’s communication devices, nonlinear distortions created by

amplifiers and transducers in miniaturized loudspeakers limit the

practical performance of linear echo path models [1]. Although

nonlinear residual echo suppression (NL-RES) can be applied to

improve the performance of linear echo cancelers [2, 3], the un-

avoidable near-end distortions of NL-RES do not alleviate the need

for nonlinear acoustic echo cancellation (NL-AEC).

A variety of concepts for NL-AEC have been proposed like the

cascade of nonlinear signal transformation and linear filtering [4, 5].

The distortions which are part of the physical system can be mod-

eled as adaptive [1, 6] or static [7] nonlinear functions. The second

class of nonlinear approaches is based on the Volterra filters (VFs)

which can be thought of as a Taylor-series expansion of a system

with memory [8–10]. Various simplified realizations have been

proposed to facilitate real-time implementations with a low order

for the nonlinearity [11–13]. As third category, artificial neural net-

works (ANNs) are used to address the nonlinear characteristics with
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a non-convex optimization problem [14–16]. Combined with the in-

troduction of functional links as integration of linearly independent

functions, the functional link artificial neural network (FLANN) and

functional link adaptive filter (FLAF) have been proposed in [17]

and [18], respectively. Finally, Kernel methods are based on a data

mapping which facilitates the analysis of nonlinear methods by lin-

ear operators in a high-dimensional feature space [19–21].

In contrast to prior work, we introduce a novel approach for

NL-AEC which is based on a sequential Monte Carlo method.

The nonlinear relation between loudspeaker and microphone signal

is modeled as part of a dynamical system whose state variables

are not restricted to be normally distributed random variables. To

approximate the statistics of the nonlinear echo path and to esti-

mate the model parameters, we apply the classical particle filtering,

where each particle represents one realization of the nonlinear echo

path [22, 23]. In order to overcome conceptual disadvantages of

the classical particle-filter approach, we introduce a new algorithm

denoted as the elitist particle filter based on evolutionary strate-

gies (EPFES). The fundamental idea is a selection of elitist particles

by means of long-term fitness measures for the approximation of the

statistics of the nonlinear echo path and the estimation of the model

parameters. Furthermore, we introduce a sampling procedure which

facilitates the dynamic identification of nonlinear characteristics.

The validity of the proposed approach is experimentally verified

with various smartphone recordings.

This paper is organized as follows: In Section 2, we briefly introduce

NL-AEC based on modeling the nonlinear distortions by a memory-

less preprocessor. This is subsequently addressed from a Bayesian

network perspective in Section 3, where the classical particle filter

is presented and its conceptional limitations described. In Section 4,

we introduce the EPFES and discuss one possible realization for the

application of NL-AEC. The experimental evaluation in Section 5

verifies the proposed algorithm with real smartphone recordings.

Finally, conclusions are drawn in Section 6.

2. NL-AEC USING A MEMORYLESS PREPROCESSOR

The system model for NL-AEC is shown in Fig. 1. The acoustic path

at time n between loudspeaker and microphone is partly modeled by

the linear finite impulse response (FIR) filter

hn = [h0,n, h2,n, ..., hM−1,n]
T

(1)

with coefficients hκ,n which are dependent on the time instant,

where κ = 0, ...,M − 1. Interfering components are captured by

the additive variable vn and nonlinearities of the echo path (as

typically resulting from the loudspeaker and the corresponding am-

plifier) are modeled by a nonlinear function applied to the input [1].
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Fig. 1. NL-AEC with memoryless preprocessor

As a consequence, the observation equation models the microphone

sample at time n, dn, as

dn = h
T
n · y(xn,an) + vn, (2)

where the input signal vector xn is defined as

xn = [xn, xn−1, ..., xn−M+1]
T

(3)

with time-domain samples xn. Furthermore, the time-dependent

length-P vector

an = [a0,n, a1,n, ..., aP−1,n]
T

(4)

parameterizes the nonlinear function y(·). The random variable vn is

assumed to be statistically independent from the input signal vector.

To estimate the relevant system parameters ân and ĥn, we make

use of the error en between the observation dn and the estimated

microphone signal d̂n.

3. NL-AEC USING CLASSICAL PARTICLE FILTERING

Assume the relevant information of a nonlinear system to be cap-

tured by the state vector

zn = [z0,n, z2,n, ..., zR−1,n]
T = [hT

n , a
T
n ]

T
(5)

with coefficients zν,n and ν = 0, ..., R− 1, where R = M + P .

This unobservable or latent vector is dependent on the time instant

n = 1, ..., N and its temporal evolution described by the system

model

zn = f (zn−1,wn) , (6)

where f (·) represents the so-called nonlinear progress [24]. The un-

certainty of the state vector is denoted as wn and equally structured

as zn in (5) with coefficients wν,n. The relationship between the

state vector zn and the observation dn is described as

dn = g (xn, zn) + vn, (7)

where g(·) represents a nonlinear function which also depends on the

input signal vector xn. With respect to (2), the state vector zn in-

tends to model the echo path including the nonlinear transformation

of the input signal vector, as well as the acoustic wave propagation

from the loudspeaker to the microphone, so that

g (xn, zn) = h
T
n · y(xn,an). (8)

The uncertainty of the observation dn is modeled by the additive

variable vn. From a Bayesian network perspective, this corresponds

to the graphical model shown in Fig. 2. The directed links express

statistical dependencies between the nodes and observed variables,

such as dn, are marked by shaded circles. The estimate of the state

Fig. 2. Bayesian network for NL-AEC

vector ẑn is derived as an minimum mean square error (MMSE)

estimate

ẑn = argmin
z̃n

E{||z̃n − zn||22}, (9)

where ||·||2 is the euclidean norm and E{·} the expectation operator.

The minimization of (9) with respect to ẑn yields the mean vector

of the posterior probability density function (PDF) p (zn|d1:n) as

estimate for the state vector

ẑn = E{zn|d1:n}, (10)

where d1:n = d1, ..., dn. In the case of linear relations between the

variables in (6) and (7), and for a linear estimator for ẑn, the MMSE

estimate of (9) leads to the Kalman filter equations. This estima-

tion is optimal in the Bayesian sense for normally distributed ran-

dom variables. Due to the nonlinear structures of (6) and (7), the

non-Gaussian PDF of the state vector zn precludes a closed-form

solution for the Bayesian estimate of ẑn in (10), so that we employ

the particle filter to approximate the posterior PDF

p (zn|d1:n) =
p(dn|zn)p(zn|d1:n−1)

∫

p(dn|zn)p(zn|d1:n−1)dzn
(11)

by a discrete distribution [25, 26]

p(zn|d1:n) ≈
L
∑

l=1

p(dn|z(l)n )δ(zn − z
(l)
n )

∫

p(dn|z(l)n )δ(zn − z
(l)
n )dzn

(12)

where δ (·) is the Dirac delta distribution and l = 1, ..., L. Based on

(12), the set of L particles z
(l)
n is characterized by the weights ω

(l)
n

p(zn|d1:n) ≈
L
∑

l=1

ω
(l)
n δ(zn − z

(l)
n ) with ω

(l)
n =

p(dn|z(l)n )
L
∑

l=1

p(dn|z(l)n )

,

(13)

which describe the likelihoods that the observation is obtained by the

corresponding particle. These likelihoods are used as measures for

the probability of the samples to be drawn from the true PDF [22].

Finally, the estimate for the state vector

ẑn = E{zn|d1:n} ≈
L
∑

l=1

ω
(l)
n z

(l)
n (14)

is given as the estimated mean vector of the approximated posterior

PDF. This fundamental concept is illustrated in Fig. 3. As starting

point, a fixed number of L samples are drawn from the initial PDF

p (z0) and evaluated based on (13). With this set of particles and
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Fig. 3. Concept of the classical particle filter

corresponding weights, the estimate ẑ1 and the discrete distribution

p (z1|d1) are determined based on (14) and (12), respectively. This

PDF is the basis for the sampling procedure of the following time

step. As shown by the circular structure in Fig. 3, the particle filter

is characterized by a finite number of state vectors which are de-

termined at the initialization step and are subsequently evaluated in

terms of their likelihood producing the observations dn [23]. This

results in the problem of degeneracy which implies that many parti-

cles have negligible weights after a few iteration steps. To address

this issue, resampling methods have been introduced performing so-

called sample impoverishment: The particles with very low weights

are replaced, so that the set of particles is represented by only a few

members with high weights. To cope with these conceptional lim-

itations, a variety of sophisticated resampling methods have been

proposed [22, 27, 28]. However, these modifications of the classical

particle filter are still associated with a high computational load and

a low performance for large search spaces [22, 29].

4. THE EPFES FOR NL-AEC

In this section, we introduce the elitist particle filter based on evolu-

tionary strategies (EPFES) as a numerical sampling method derived

from classical particle filtering and discuss one possible realization

of the EPFES for the task of NL-AEC.

4.1. Properties and realization of the EPFES

As first modification with respect to the classical particle filter, we

approximate the discrete distribution p (zn|d1:n) with a continuous

PDF p̂ (zn|d1:n), as proposed for the Gaussian case in [30]. This

leads to the advantage of addressing degeneracy and sample impov-

erishment without introducing resampling methods.

Furthermore, the instantaneous adaptation of the estimated state vec-

tor ẑn solves the local optimization problem regardless of the gen-

eralization of the instantaneous solution. Therefore, we employ a

recursive calculation of the particle weights

ω
(l)
n = λω

(l)
n−1 + (1− λ)

p
(

dn|z(l)n

)

L
∑

l=1

p
(

dn|z(l)n

)

, (15)

where λ is the so-called forgetting factor.

The major conceptual change with respect to classical particle fil-

tering is based on evolutionary strategies (ES) and associated with

the so-called “natural selection” [31]: At time instant n, we con-

sider the set of L samples z
(l)
n and corresponding weights ω

(l)
n . In

the selection process, the samples with a weighting factor smaller

than a fixed threshold ωth are dropped [32]. The remaining set of

Qn ≤ L samples represents the so-called elitist particles z̄
(qn)
n [32]

Fig. 4. Concept of the EPFES with an approximated posterior PDF

and is characterized by the normalized weights

ω̄
(qn)
n =

p
(

dn|z̄(qn)
n

)

Qn
∑

qn=1

p
(

dn|z̄(qn)
n

)

, (16)

where qn = 1, ..., Qn. Based on (14), the estimate of the state vector

is given as weighted superposition of the elitist particles

ẑn =

Qn
∑

qn=1

ω̄
(qn)
n z̄

(qn)
n . (17)

Subsequently, the estimated state vector ẑn is employed to approxi-

mate the PDF p̂ (zn|d1:n) as proposed for the Gaussian case in [30].

From this distribution, we draw L−Qn samples to refill the set of L
particles for the following time step. In the terminology of evolution-

ary strategies (ES), this introduction of innovation can be identified

as mutation. Finally, the set of particles z
(l)
n at the beginning of every

iteration consists of Qn−1 elitist particles of the previous time step

and L − Qn−1 new samples. This implies that we create two sub-

sets of particles which intend to capture dynamic nonlinearities by

mutation and time-invariant system components by the evolutionary

selection with recursive weights.

An overview of the EPFES is shown in Fig. 4. In comparison to

the classical particle-filter concept in Fig. 3, we replace the discrete

distribution by an approximated PDF and integrate an evolutionary

selection process which facilitates the introduction of innovation into

the set of particles by taking samples from the approximated poste-

rior PDF p̂ (zn|d1:n).

4.2. Application to NL-AEC

In the following, we apply the EPFES to the task of NL-AEC. Based

on the definition in (5), the impulse response vector of the acous-

tic path and the coefficients of the nonlinear function are modeled

by the state vector zn. This implies that the samples z
(l)
n represent

different realizations of the nonlinear echo path. Consequently, the

EPFES is applied to make an estimate for all unknown quantities in

the physical system, except for the additive uncertainty vn. Further-

more, the estimated microphone samples d̂
(l)
n are calculated based on

(2) and (5) to define the likelihoods p(dn|z(l)n ) with Laplacian PDFs

p
(

dn|z(l)n

)

=
1√
2σn

exp

{

−
√
2 |d̂(l)n − dn|

σn

}

, (18)

where

σn = |dn − ĥ
T
n−1 · y(xn, ân−1)|+ ε. (19)
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To provide numerical stability, the instantaneous estimate of the ab-

solute error in (19) is augmented with a small positive constant ε.

The approximation of the posterior PDF p̂ (zn|d1:n) is based on a

uniform distribution with the estimated state vector ẑn as mean vec-

tor. The absolute deviation from the entries of ẑn is equal to η for the

coefficients aτ,n and equal to µ |ĥκ,n| for the filter taps hκ,n. The

latter choice is inspired by the proportionate normalized least mean

square (PNLMS) algorithm, which includes an individual update of

the filter coefficients dependent on their current value [33].

5. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed realization of the EPFES

by means of the echo return loss enhancement (ERLE)

ERLEn = 10 log10

(

E{d2n}
E{e2n}

)

(20)

as indicator for the quality of the system identification, where E{·}
is the expectation operator, which we approximate by averaging over

intervals of 0.3 s. The evaluation is based on different smartphone

recordings of male and female speech and durations of 18 s. Fur-

thermore, the acoustic path is characterized by a reasonable time-

invariance and the signal to noise ratio is approximately 40 dB. The

filter adaptation stops at the time instant of 9 s, so that we can eval-

uate the online performance during the first half and the expected

AEC performance in case of double-talk during the second half of

the simulation. The estimated filter vector consists of M = 256
coefficients at a sampling rate of 16 kHz. Furthermore, the time-

invariant parameters are set to λ = 0.9995, ε = 10−5, η = 10, and

µ = 0.1. The observation model is chosen as weighted superposi-

tion of the linear term and the Legendre functions L̺{·} of first kind

and orders ̺ = 3, 5:

dn = h
T
n (xn + a3,nL3{xn}+ a5,nL5{xn}) + vn. (21)

As proposed in the previous section, the state vector of the EPFES

models the impulse response vector of the acoustic path as well as

the coefficients of the nonlinearity. This implies a high-dimensional

search space and a bad system identification during the first seconds.

For this reason, we integrate the estimated filter vector of the normal-

ized least mean square (NLMS) algorithm as innovation into the set

of particles z
(l)
n at every time step n. This is realized with a stepsize

of the NLMS algorithm equal to 0.5 and results in a more efficient

system identification and the equivalence of EPFES and NLMS al-

gorithm for L = 1.

Fig. 5 shows the resulting ERLE for a male (a) and female speech

signal (b) for different numbers of samples L, where L = 1 corre-

sponds to the NLMS algorithm. We can notice that the system iden-

tification improves with increasing number of samples L and that the

EPFES performs remarkably better than the NLMS algorithm. Fur-

thermore, the recursively determined particle weights lead to a better

performance also in the case of frozen filter coefficients: The perfor-

mance with converged, non-adaptive filters after the time instant of

9 s is improved with respect to the NLMS algorithm. Consequently,

the simulation results verify the property of the EPFES to identify

a time-invariant nonlinearity. Table 1 shows the ERLE for instan-

taneous filter adaptation and frozen filter coefficients averaged over

the corresponding interval of 9 s.

Table 1. Average ERLE of smartphone recordings for instantaneous

filter adaptation (0 s - 9 s) and frozen filter coefficients (9 s − 18 s).

Recorded speech Male Male Female Female

Time frame 0 s - 9 s 9 s - 18 s 0 s - 9 s 9 s - 18 s

L = 1 9.2 dB 8.7 dB 14.5 dB 13.2 dB

L = 10 15.9 dB 13.4 dB 20.2 dB 16.2 dB

L = 100 16.9 dB 16.3 dB 20.6 dB 17.2 dB

0

10

20

30

40

time/s →
E

R
L

E
/d

B
→

L = 100 L = 10 L = 1

(a) Smartphone recording of male speech

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

time/s →

E
R

L
E

/d
B

→

L = 100 L = 10 L = 1

(b) Smartphone recording of female speech

Fig. 5. Performance comparison in terms of ERLE between the

EPFES and the NLMS algorithm which is represented by L = 1.

6. CONCLUSIONS

In this paper, we introduced the EPFES as novel approach for

NL-AEC. Similar to the classical particle filter, this algorithm con-

sists of a set of particles and corresponding weights which represent

different realizations of the nonlinear echo path and their likelihood

to be the solution of the optimization problem. To cope with con-

ceptional disadvantages of the classical particle filter, the EPFES

includes an evolutionary selection of elitist particles and a recur-

sive calculation of the particle weights. As a consequence, we can

minimize the instantaneous error signal and generalize the solution

to identify time-invariant nonlinearities. These properties of the

EPFES have been verified with real smartphone recordings of male

and female speech: The system identification improves significantly

relative to the NLMS algorithm for instantaneous filter adaptation

and also generalizes better than an NLMS-adapted linear filter.
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