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ABSTRACT

For the nonlinear acoustic echo cancellation, we present an adaptive
learning of the saturation effect of the amplifier and the room propa-
gation in terms of the hard-clipping and the FIR system. The conven-
tional learning algorithms are based on a gradient descent method,
i.e., rely on local information, which results in a major drawback
that the estimation of the hard-clipping is trapped in local minima.
In this paper, we solve this drawback by exploiting global informa-
tion embodied as a set including the desired hard-clipping with high-
probability. The proposed adaptive learning of the hard-clipping is
designed to track the sets with a projection-based algorithm. In the
adaptive learning of the FIR system, we propose the use of the Huber
loss function for the robustness against the error in the estimation of
the hard-clipping. Numerical examples show that the proposed al-
gorithm is never trapped in the local minima and has an excellent
steady-state behavior.

Index Terms— Nonlinear acoustic echo cancellation, memory-
less nonlinearity, clipping compensation, adaptive filtering.

1. INTRODUCTION

Nonlinear acoustic echo cancellation (NLAEC) aiming to attenuate
the nonlinear echo signal has become increasingly important be-
cause, e.g., today’s telecommunication devices often include small
amplifiers and loudspeakers introducing significant saturation non-
linearity [1–8]. The overall echo path is the cascade of the amplifier
and the loudspeaker followed by the room propagation. The former
ones and the latter one can be modeled by the hard-clipping and the
finite impulse response (FIR) system, respectively [1–5]. A major
goal of the NLAEC is to learn adaptively the threshold of the hard-
clipping and the impulse response vector of the FIR system [1–5].

The conventional learning algorithms [1–5] are extension of the
NLMS [9] and derived by a gradient descent method applied to the
squared estimation residual. Dependency only on local information,
i.e., the gradient, causes a major drawback, to which we refer as local
minima trapping, that the threshold is never updated if its current
estimate is larger than the amplitude of the input signal [2–4].

In this paper, we solve the local minima trapping by exploiting,
as global information on the desired threshold, a feasible threshold
set consisting of all thresholds satisfying that the estimation residual
is less than a given constant. To use the set in the estimation of the
hard-clipping, we provide its explicit representation as a union of
closed intervals by using the piecewise linearity of the estimation
residual. The proposed adaptive learning algorithm for the hard-
clipping is derived by tracking the convex hull of the set based on
the Projection Onto Convex Sets (POCS) [10–16]. Moreover, we
present an efficient computation for these procedures, which has
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comparable computational complexity to the conventional algo-
rithms. In the adaptive learning of the FIR system, we propose to
use the Huber loss function [17] for the robustness against the error
in the estimation of the hard-clipping in the initial stage.

Numerical examples show that the proposed adaptive learning
of the hard-clipping is free from the local minima trapping, and the
proposed simultaneous learning has the best steady-state behavior in
the echo return loss enhancement.

2. PRELIMINARIES

2.1. Nonlinear Acoustic Echo Cancellation

Let N and R respectively denote the sets of nonnegative integers and
real numbers, and define N∗ :=N \{0} and R+ :={x ∈ R |x ≥ 0}.

Consider a nonlinear echo path modeled by the cascade of the
hard-clipping function followed by the FIR filter [1–5], namely, ob-
servation (xk, dk) at time k ∈ N∗ is defined by

uk := φγ?(xk), (1)

dk := utkh
? + vk, (2)

wherexk := [xk, . . . , xk−N+1]t ∈ RN is the input (far-end speech)
signal, uk ∈ RN is the unknown clipped signal, h? ∈ RN is the
room impulse response vector, dk consists of the echo signal yk :=
utkh

? and noise vk ∈ R, N ∈ N∗ is the length of the impulse
response vector, and (·)t denotes the transpose operation. The hard-
clipping function with threshold value γ ∈ R+ is defined by1

φγ : RN → [−γ, γ]N,φγ(xk) := [φγ(xk), . . . , φγ(xk−N+1)]t,

φγ : R→ [−γ, γ], φγ(x) :=

{
x, if |x| ≤ γ,
γsgn(x), otherwise.

A major goal of the nonlinear acoustic echo cancellation (NLAEC)
is a simultaneous approximation of γ? and h? by their estimation
sequences (γk)k∈N and (hk)k∈N with available data (xi, di)

k
i=1 and

initial estimates h0 ∈ RN and γ0 ∈ R+. Note that different models
are also found in the NLAEC (see, e.g., [6–8, 18, 19]).

2.2. Brief Review of Conventional Methods

The update of the conventional algorithms [1–5] for hk and γk is
an extension of the well-known NLMS [9] and derived from a wide-
sense gradient descent method applied to the squared estimation
residual function e2

k(γ,h):

γk+1 = γk + (µγ/wγ)ek(γk,hk)htk∇φγk (xk), (3)
hk+1 = hk+ (µh/wh)ek(γk,hk)ûk, (4)

where µγ and µh are the step-sizes with normalization constants wγ
and wh, ek :R×RN→R is defined by ek(γ,h) :=dk−htφγ(xk),
ûk := φγk (xk) is an estimated clipped signal, and ∇φγk (xk) ∈

1sgn(x) := x/|x| (∀x ∈ R\{0}) and sgn(0) := 0.
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RN is the wide-sense gradient vector defined by ∇φγk (xk) :=
[φ′γk (xk), . . . , φ′γk (xk−N+1)]t with the right derivative

φ′γk (x) :=
∂

∂γ
φγ(x)

∣∣∣∣
γ=γk+0

=

{
0, if γk ≥ |x|,
sgn(x), otherwise.

(5)

The main drawback of (3), to which we refer as the local minima
trapping, is that γk is not updated regardless of ek(γk,hk) if γk
is larger than the maximum amplitude of xk because ∇φγk (xk)
becomes 0 from (5). This drawback is partially discussed in [2–4]
as an initialization issue.

3. MAIN CONTRIBUTIONS

3.1. Feasible Set for Hard-Clipping Estimation

To solve the local minima trapping, we introduce a feasible thresh-
old set S(εk)

k consisting of all γ whose recent r (∈ N∗) estimation
residual ek(γ,hk) is suppressed sufficiently2:

S
(εk)
k :=

{
γ ∈ [0, γmax]

∣∣‖ek(γ,hk)‖1 ≤ εk
}
, (6)

where γmax is an upper bound of threshold3, ek(γ,hk):=[ek(γ,hk),
. . . , ek−r+1(γ,hk)]t ∈Rr , or

ek(γ,hk) = dk−Hkφ̄γ(x̄k), (7)

dk := [dk, . . . , dk−r+1]t ∈ Rr , Hk ∈ Rr×N̄ is a Toeplitz matrix
defined withhk and represents the convolution, φ̄γ(x̄k) :=[φγ(xk),

. . . , φγ(xk−N̄+1)]t ∈ RN̄ , x̄k := [xk, . . . , xk−N̄+1]t ∈ RN̄ , and
N̄ := N + r − 1. A constant εk ∈ R+ determines the reliability
of the set-membership: γ? ∈ S(εk)

k . We choose the `1 norm in (6)
for the robustness against the mismatch between hk and h? and the
impulsive noise occurred, e.g., in double-talk situations.

To use S(εk)
k in the estimation of γ?, we provide its explicit rep-

resentation as a union of closed intervals S(εk)
k,i . Our essential idea is

based on observation in r = 1. That is, since the piecewise linearity
of the hard-clipping φγ(xk) w.r.t. γ implies that of ek(γ,hk), the
set S(εk)

k becomes a union of closed intervals.
Proposition 1.
(a) (Piecewise linearity of φ̄γ(x̄k) and ek(γ,hk)) Sort the absolute

value of entries in x̄k into (γk,i)
N̄
i=1 in non-decreasing order, and

define γk,0 := 0 and γk,N̄+1 := γmax. Then, φ̄γ(x̄k) satisfies4

φ̄γ(x̄k) = γfi(x̄k) + gi(x̄k) (γ ∈ [γk,i, γk,i+1]), (8)

where fi(x̄k) :=
(
φ̄γk,i+1(x̄k)− φ̄γk,i(x̄k)

)/
(γk,i+1 − γk,i)

and gi(x̄k) := φ̄γk,i(x̄k)− γk,ifi(x̄k). Eqs. (7) and (8) imply
the piecewise linearity of ek(γ,hk), i.e.,

ek(γ,hk) = bk,i − γak,i (γ ∈ [γk,i, γk,i+1]), (9)

where ak,i := Hkfi(x̄k) and bk,i := dk −Hkgi(x̄k).

(b) (Explicit representation of S(εk)
k ) From (a), we can decompose

S
(εk)
k into the closed intervals S(εk)

k,i , i.e.,

S
(εk)
k =

⋃N̄
i=0 S

(εk)
k,i ,

S
(εk)
k,i =

{
γ ∈ [γk,i, γk,i+1]

∣∣‖bk,i − γak,i‖1 ≤ εk } . (10)

2The `1 norm of x ∈ Rr is defined by ‖x‖1 :=
∑r
i=1 |xi|.

3For the simplicity of notations, we here assume the existence of γmax.
This assumption can be relaxed easily. Note that γmax is set to sufficient
large value in our experiments.

4In this paper, for the simplicity, we assume that entries of (γk,i)
N̄+1
i=0 are

different. This assumption can be relaxed easily.

↵k,2,1�+�k,2,1

↵k,2,2�+�k,2,2

Fig. 1: An illustration of S(εk)
k,i in (10) and S(εk)

k and ‖ek(hk, γ)‖1 in (6)
with N=2 and r=2.

Note that each closed interval S(εk)
k,i can be specified easily (see Re-

mark 1(a)). An example of S(εk)
k,i is illustrated in Fig. 1. Combining

Prop. 1 and the following Remark 1, we have an algorithm to obtain
an explicit representation of S(εk)

k , which is shown in Algorithm 1,
with O

(
rN̄
)

multiplications and O
(
N̄ log2 N̄ + N̄r log2 r

)
com-

parisons.
Remark 1.
(a) (Specification of the closed interval S(εk)

k,i ) We can specify S(εk)
k,i

using analogous idea to Prop. 1. The piecewise linearity5 of
‖bk,i − γak,i‖1 holds from the linearity of bk,i − γak,i, i.e.,

‖bk,i−γak,i‖1=αk,i,jγ+βk,i,j (γ∈ [pk,i,j , pk,i,j+1]), (11)

where (pk,i,j)
rk,i+1

j=0 , (αk,i,j)
rk,i
j=0 and (βk,i,j)

rk,i
j=0 can be calcu-

lated as shown in the step 3(i)(ii) of Algorithm 1. Therefore,
S

(εk)
k,i can be further decomposed into

S
(εk)
k,i =

⋃rk,i
j=0 S

(εk)
k,i,j , (12)

S
(εk)
k,i,j := {γ∈ [pk,i,j , pk,i,j+1]|αk,i,jγ+βk,i,j ≤ εk}. (13)

By computing the endpoints of the closed intervals S(εk)
k,i,j and

combining them, S(εk)
k,i can be specified as6

S
(εk)
k,i =

[
min

j∈{0,...,rk,i}
minS

(εk)
k,i,j , max

j∈{0,...,rk,i}
maxS

(εk)
k,i,j

]
. (14)

(b) (Choice of εk) To guarantee the nonemptiness of S(εk)
k , we set

εk = ε
(k)
mgn + minγ∈[0,γmax]‖ek(γ,hk)‖1, where ε(k)

mgn ∈ R+

is a user-defined constant, and minγ∈[0,γmax] ‖ek(γ,hk)‖1 is
calculated as shown in the step 3(iii) of Algorithm 1.

(c) (Computation of ak,i and bk,i inO
(
rN̄
)
) By using the fact that

fi(xk)− fi−1(xk) has only one non-zero entry, (ak,i)
N̄
i=0 and

(bk,i)
N̄
i=0 in (9) can be calculated as

ak,i−1 = ak,i + sgn
(
xk−τk(i)+1

)
cτk(i), (15)

bk,i = bk,i−1 − xk−τk(i)+1cτk(i), (16)

for i = 1, . . . , N̄ with [c1, . . . , cN̄ ] := Hk, ak,N̄ = 0,
bk,0 = dk, and τk : {1, . . . , N̄} → {1, . . . , N̄} satisfies
|xk−τk(1)+1| < · · · < |xk−τk(N̄)+1| (see also footnote 4).

3.2. Adaptive Learning of Overall Echo Path

We derive an adaptive learning for the hard-clipping by tracking the

5The property has been shown in [20] using the relation to the weighted
median search [21–23].

6For the empty set ∅, we let min∅ :=∞ and max∅ :=−∞.
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Algorithm 1 Obtain an explicit representation of S(εk)
k in (6) by specifying

S
(εk)
k,i in (10) with x̄k , dk , Hk in (7), γmax in (6) and given ε(k)

mgn.

1: To clarify the ranges that ek(γ,hk) becomes linear as (9), sort the ab-
solute value of entries in x̄k into (γk,i)

N̄
i=1 in non-decreasing order, and

set γk,0 =0 and γk,N̄+1 =γmax.
2: To obtain a linear representation of ek(γ,hk) in each range, calculate

(ak,i, bk,i)
N̄
i=0 in (9) (see its efficient computation (15), (16)).

3: Specify the closed interval S(εk)
k,i through the following steps.

(i) To clarify the ranges that
∥∥bk,i−γak,i∥∥1

becomes linear as (11),

compute (pk,i,j)
rk,i+1

j=0 by7

pk,i,j :=

γk,i, if j = 0,
bk,i,σk,i(j)/ak,i,σk,i(j), if j = 1, . . . , rk,i,

γk,i+1, if j = rk,i + 1,

where σk,i : {1, . . . , rk,i} → Jk,i is obtained by sorting
{bk,i,j/ak,i,j}j∈Jk,i in non-decreasing order so that pk,i,1 ≤
· · · ≤ pk,i,rk,i , rk,i := |Jk,i|, and

Jk,i :={j∈{1, . . . , r}|∃γ∈(γk,i, γk,i+1) s.t. bk,i,j−γak,i,j=0}.

(ii) To obtain a linear representation of
∥∥bk,i−γak,i∥∥1

in each
range, calculate (αk,i,j , βk,i,j)

rk,i
j=0 in (11) by8

αk,i,j :=

{−atk,isgnr(bk,i−γk,iak,i,−ak,i), if j = 0,
αj+2|ak,i,σk,i(j)|, otherwise,

βk,i,j :=

{
btk,isgnr(bk,i−γk,iak,i,−ak,i), if j = 0,
βk,i,j−2|bk,i,σk,i(j)|, otherwise.

(iii) To guarantee the nonemptiness of S(εk)
k , set εk = ε

(k)
mgn +

minγ∈[0,γmax] ‖ek(γ,hk)‖1, or

εk=ε
(k)
mgn+ min

i∈{0,...,N̄}
min

j∈{0,...,rk,i}
min

γ∈[pk,i,j ,pk,i,j+1]
αk,i,jγ + βk,i,j .

(iv) Specify the closed interval S(εk)
k,i by (14) with calculating end-

points of S(εk)
k,i,j in (13).

Output
⋃N̄
i=0 S

(εk)
k,i .

convex hull9 of S(εk)
k with a time-varying extension of the Projection

Onto Convex Sets (POCS) [10–16]:10

γk+1 := (1− µγ)γk + µγP
convS

(εk)

k

(γk), (17)

where µγ ∈ (0, 2) is the step size, and the metric projection onto the
convex hull of S(εk)

k is given by

P
convS

(εk)

k

(γk) =


minS

(εk)
k , if γk < minS

(εk)
k ,

maxS
(εk)
k , if γk > maxS

(εk)
k ,

γk, otherwise,

where minS
(εk)
k and maxS

(εk)
k can be calculated as mini∈{0,...,N̄}

minS
(εk)
k,i and maxi∈{0,...,N̄}maxS

(εk)
k,i with (14) and Algorithm 1.

7We denote ak,i=:[ak,i,1,. . ., bk,i,r]
t and bk,i=:[bk,i,1,. . ., bk,i,r]

t.
8We define an extended sign function sgn(x, y) := sgn(x) if

sgn(x) 6= 0, sgn(x, y) := sgn(y) otherwise, and define sgnr(x,y) :=
[sgn(x1, y1), . . . , sgn(xr, yr)]t ∈ {−1, 0, 1}r .

9The convex hull of S ⊂ R is the minimal convex set containing S and
is denoted by convS. Note that the closedness of convS

(εk)
k is guaranteed

by the compactness of S(εk)
k [24, Theorem 1.4.3]. Remark that S(εk)

k is a

single closed interval, i.e., convS
(εk)
k = S

(εk)
k , in most of our simulations.

10We define the `2 norm of x ∈ Rn by ‖x‖2 :=
√
xtx. For every

x ∈ Rn and nonempty closed convex set C ⊂ Rn, the metric projection of
x ontoC is defined by PC(x) := arg miny∈C ‖x− y‖2, and the distance
between x and C is defined by d(x, C) := miny∈C ‖x− y‖2.

Note that (17) can be explained in the frame of the adaptive pro-
jected subgradient method (APSM) [14–16] applied to a time vary-
ing cost function d

(
γ, convS

(εk)
k

)
, which ensures the properties

of the APSM [15] including the monotone approximation |γk+1 −
γ∗| < |γk − γ∗| for any γk /∈ convS

(εk)
k and γ∗ ∈ convS

(εk)
k .

For the adaptive learning of the FIR system, we define the time-
varying cost function Θk : RN → R by

Θk(h) :=ρk(ek(γk,h)),

where the Huber loss function ρk : R→ R is defined as

ρk(x) :=

{
x2/2, |x| ≤ δk,
δk|x| − δ2

k/2, otherwise,

with the cut-off value δk > 0. We adopt the Huber loss function for
the robustness against the error in γk and the impulsive noise caused
in double-talk situations [25–27]. Applying the adaptive proximal
forward-backward splitting (APFBS) [27–32] to Θk, we have the
update for the FIR system:

hk+1 :=hk−µhmin
{
1, δk/|ek(γk,hk)|

}
(hk−PΠk(hk)), (18)

where µh ∈ (0, 2), and PΠk is the metric projection onto Πk :=
arg minh∈RN |ek(γk,h)| calculated as

PΠk (hk) = hk +
ek(γk,hk)

‖ûk‖22
ûk.

Properties of the APFBS including the monotone approximation are
shown in [28], and its excellent performance is confirmed, e.g., in
[27–34].

4. SIMULATION RESULT

We conduct the simulations to show the efficacy of the proposed
adaptive learning algorithm. In all the experiments, γ? in (1) is set to
1, and h? in (2) is taken from [35] with N = 1024. The parameters
of the algorithms are shown in Table 1.

First, to focus on the adaptive learning of the hard-clipping, we
set hk = h? and compare the proposed algorithm (17) referred to
as “Proposed” and the conventional one (3) labeled “NLMS” in the
Normalized Squared Error (NSE)

NSE(k) := 10 log10((γk − γ?)2/(γ?)2)

averaged over 250 trials. In (3), the normalization constant is set as
wγ = ‖h?‖22 according to [2, 3].
Experiment with Gaussian input: The input signal xk follows the
i.i.d. Gaussian distribution N (0, 1), and vk is the white Gaussian
noise. The experiments are performed for different SNR conditions
15dB and 5dB and different initial estimates γ0 = 0 and γ0 = 2. In
Fig. 2(a)(b), the conventional algorithm with γ0 = 2 exhibits worse
performance than one with γ0 = 0 as the local minima trapping is
caused by a relatively large initial estimate. Moreover, in Fig. 2(b)
where SNR is 5dB, the performance of the conventional algorithms
become unstable due to the local minima trapping as one of the trials
is shown in Fig. 2(c). On the other hand, in all the experiments, the
proposed algorithm shows a robust and better performance.
Experiment under double-talk: The input xk is a speech signal
in [36], and vk consists of the white Gaussian noise and a speech
in [36] summed in the double-talk occurring between the 5000 and
the 10000th sample. The SNR between the echo signal yk and the
white Gaussian noise is 20dB, the SNR between yk and the near-end
speech is 5dB, and the initial estimate is set as γ0 = 0. As shown in
Fig. 2(d)(e), the conventional algorithm is trapped in local minima
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Table 1: Parameter settings in the the experiments. The step sizes µγ and µh, δ̃0 and η are chosen in such a way that the initial convergence speed is
same. In the proposed algorithm, ε(k)

mgn is chosen to obtain the best steady-state behavior in our experiments. For the speech input, to cope with silent

blocks in speech, ε(k)
mgn of the proposed method is increased if ‖H?xk‖1 is small. In addition to the previous case, ε(k)

mgn of the “Proposed2” is increased if

ε
(k)
min := minγ∈[0,γmax] ‖ek(γ,hk)‖1 becomes large, which implies unreliability of the sample due to the double-talk.

Situation Input Algorithm µγ r ε(k)mgn µh δ̌0 η

Hard-clipping
Estimation

Gaussian Proposed 1 50 8× 10−4 0 none none
NLMS [2] 0.6 none none 0 none none

Speech Proposed1 1 150

{
10−4, if ‖H?xk‖1 > 3× 10−4

104, otherwise.
0 none none

Proposed2 1 150

{
10−4, if ‖H?xk‖1 > 3× 10−4 and ε(k)min < 10−2

104, otherwise.
0 none none

NLMS [2] 0.5 none none 0 none none

Simultaneous Estimation Gaussian Proposed 0.1 150 5× 10−3 1.0 10−2 0.998

NLMS [5] 0.1 none none 1.0 none none
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Fig. 2: Comparison of the proposed algorithm and the conventional algorithm.

due to the double-talk and is never updated even after the double-talk
has ended. On the other hand, the proposed methods are free from
the local minima trapping and have better steady-state behavior.

Next, to confirm the efficacy of the proposed simultaneous learn-
ing (17) and (18) referred to as “Proposed”, we compare it with the
conventional algorithm (3) and (4) labeled “NLMS” in the Echo Re-
turn Loss Enhancement (ERLE)

ERLE(k) :=10 log10

(∑k
j=k−`+1 y

2
j

/∑k
j=k−`+1(yj−ûtjhj)2

)
averaged over 250 trials with ` = 2000. The input signal xk follows
the i.i.d. Gaussian distribution N (0, 1), vk is the white Gaussian
noise with SNR = 15dB, and the initial estimates are set as γ0 = 2
and h0 = 0. The cut-off value δk in (18) is designed according
to [26, 27] with slight modifications:

δ̃k := ηδ̃k−1+(1−η)min
{
δ̃k−1, e

2
k−1(γk−1,hk−1)

/
‖ûk−1‖22

}
,

δk = ‖ûk‖2
√
δ̃k,

where η ∈ (0, 1) and δ̃0 > 0. In (3) and (4), the normalization con-
stants are set as wγ = (htk∇φγk (xk))2 + ωk ‖ûk‖22 and wh =

ωk(htk∇φγk (xk))2 + ‖ûk‖22 with ωk := 1/(
√
Nγk) according

to [5]. As shown in Fig. 2(f), the proposed method achieves the best

steady-state behavior and improves about 16dB in the ERLE.

5. CONCLUDING REMARKS

For the nonlinear acoustic echo cancellation, we present an adap-
tive learning of the hard-clipping γ? and the FIR system h? in (1)
and (2). We solve the local minima trapping caused in the con-
ventional algorithms [1–5] by introducing the feasible threshold set
S

(εk)
k in (6). To use the set in the estimation of the hard-clipping,

we provide its explicit representation as a union of closed intervals
S

(εk)
k,i by using the piecewise linearity of ek(γ,hk) w.r.t. γ. The

proposed adaptive learning for the hard-clipping is derived by track-
ing the convex hull of the set convS

(εk)
k based on the observations

that convS
(εk)
k = S

(εk)
k in most of our simulations. In the adap-

tive learning of h?, we propose the use of the Huber loss function
to measure ek(γk,h) for the robustness against the error in γk. Nu-
merical examples show that the proposed algorithm is free from the
local minima trapping and has an excellent steady-state behavior.

Future work includes an extension of the proposed algorithm to
the framework [6, 7] where the echo path is modeled by the cascade
of the hard-clipping, the power filter, and the FIR system.
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