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ABSTRACT

Acoustic echo cancellation has traditionally employed basi-

cally all variants known from deterministic adaptive filter design,

such as least mean-square (LMS), recursive least-squares (RLS), and

frequency-domain adaptive filters (FDAF). More recently, a stochas-

tic adaptive filter design based on the concept of acoustic state-space

modeling of the echo path has been introduced to accommodate for

an ever sought unification of adaptive filtering and adaptation con-

trol. The corresponding Kalman filter theory has been formulated

for single-channel, multi-channel, and nonlinear echo cancellation

problems. This paper closes an important gap by formulating the

state-space model and the corresponding adaptive algorithm for the

partitioned-block filtering structure which is especially relevant in

practice. This structure allows for the use of significantly longer

filter lengths in comparison to previous work, and for the flexible

design and implementation of acoustic echo cancellers for widely

differing acoustic conditions.

Index Terms— acoustic echo control, adaptive filtering

1. INTRODUCTION AND RELATION TO PRIOR WORK

Acoustic echo represents a well-known distraction in hands-free

voice communication systems. Due to acoustic coupling between

the loudspeaker and the microphone of a telecommunication termi-

nal, the far-end talker receives a delayed version of his own voice

that will eventually inhibit fluent conversation. The general setup of

the acoustic echo problem is illustrated in Fig. 1. The far-end signal

x(n) is played back by the near-end loudspeaker. The microphone

signal y(n) then picks up the echo d(n) together with the near-end

signal s(n), including background noise and local speech. The

adaptive acoustic echo canceler (AEC) regenerates and subtracts

an estimate of the echo from the microphone signal. A variety of

adaptive filter structures and methods to control the adaptation in

adverse environments have been proposed for this purpose [1, 2, 3].

Typically, due to time-varying acoustics and echo-path undermodel-

ing, the AEC is not always able to sufficiently remove the echo and,

thus, a residual echo suppressor (RES) is introduced after the AEC

AEC

RES

d(n)

s(n)

x(n)

y(n)e(n)
d̂(n)

z(n)

Fig. 1. Setup of the acoustic echo cancellation problem.

to attenuate remaining echo components [4, 5, 6, 7].

In modern communication systems such as Voice-over-IP ser-

vices or high-quality video conferencing systems, sampling rates of

16 kHz and higher are used. This implies a significant increase in

computational complexity for the AEC. Moreover, the convergence

speed of time-domain adaptive filters is usually not sufficient in case

of high sampling rates and long echo paths. Besides subband adap-

tive filters [8, 9], frequency-domain adaptive filters using block pro-

cessing are well-known solutions to address both of these issues

[10, 11, 12, 13]. However, the required length of the frequency

transform becomes relatively large for long echo paths, leading to

potential algorithmic noise, e.g., when implementing the AEC with

fixed point arithmetic in embedded devices. In this case, approaches

based on partitioned-block filtering [14, 15, 16, 17, 18] are more suit-

able, as they allow for flexible designs, e.g., a separate choice of the

transformation length and the time span covered by the AEC, and

the filter length is not bounded to powers of two as typically used

in fast fourier transform implementations. Moreover, a reduction of

the transformation length also reduces the algorithmic delay caused

by post-processing stages such as the RES. By using a partitioned

block structure, approximations of the RES filter to reduce the delay

as, e.g., proposed in [19], can be avoided.

The step-size parameter to control the adaptation of the filter co-

efficients is generally a critical component of the AEC. An overview

of popular methods is found, e.g., in [1, 2, 3]. The alternative ap-

proach in [6] relies on an acoustic state-space model of the echo

path to deduce a robust and efficient frequency-domain adaptive fil-

ter with inherent step-size control, however, not considering block

partitioning. This approach has analogously been applied to multi-

channel as well as nonlinear adaptive filtering problems [20, 21]. In

this paper, we extend the approach in [6] to the partitioned-block fil-

tering structure, which is of practical importance for the application

of AECs for widely varying acoustic conditions.

In our paper, Sec. 2 revises partitioned-block adaptive filtering

based on state-space modeling in analogy with [6]. Sec. 3 shows

that the corresponding exact Kalman filter in the block-frequency-

domain can be simplified into a diagonalized version. This light

approximation leads to a variant of the known multi-delay adaptive

filter [14], but providing inherent adaptive step-size control. While

the resulting step-size turns out to be similar to the one in [15], we

propose a different estimator for the required system distance, again

in analogy with the non-partitioned algorithm in [6]. In Sec. 4, a

so far unique relation between the step-size parameters of all parti-

tions and the optimum RES filter is derived in order to efficiently

obtain the RES coefficients. Simulation results in Sec. 5 confirm the

suitability of the proposed architecture for acoustic echo control.
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2. ACOUSTIC ECHO CANCELLATION (AEC) PART

At first, the previous concept of acoustic state-space modeling is for-

mally extended to partitioned-block filters. On this basis, the corre-

sponding Kalman filter for acoustic echo path tracking is formulated.

2.1. State-Space Partitioned-Block Echo Path Model

Using the notation in Fig. 1, the microphone signal y(n) can be ex-

pressed as the sum of the near-end signal s(n) and the echo signal

d(n). Since the echo signal results from the discrete-time convolu-

tion of the loudspeaker input signal x(n) with the acoustic echo path

w(n), we have

y(n) = x(n) ∗ w(n) + s(n). (1)

In the following, we assume that the acoustic echo path can be suf-

ficiently modeled by a corresponding finite impulse response (FIR)

filter. Aiming at a partitioned block implementation of (1), we di-

vide the FIR filter with coefficients w(n) into B partitions of length

L. The coefficient vector wb(k) of length L then contains the coef-

ficients of the b-th partition:

wb(k) = [w(bL, k), w(bL+1, k), . . . , w(bL+L− 1, k)]T. (2)

We further introduce an input vector xb(k) of the b-th partition of

length M > L for the block time index k and a frame shift of R:

xb(k) = [x(kR− bL−M + 1), . . . , x(kR− bL)]T (3)

Then, the corresponding complex valued excitation matrix Xb(k) in

the frequency domain is obtained as

Xb(k) = diag{FMxb(k)} , (4)

where FM is the Fourier matrix of size M × M . Here, diag{a}
denotes a diagonal matrix with the vector a on its main diagonal.

The elements Xb(m, k) on the main diagonal of Xb(k) are given by

FMxb(k) = [Xb(0, k), Xb(1, k), . . . , Xb(M − 1, k)]T, (5)

where m denotes the frequency index. The frequency domain repre-

sentation Wb(k) of the filter partitions is given by

Wb(k) = [Wb(0, k), Wb(1, k), . . . , Wb(M − 1, k)]T, (6)

where the constraint is applied that only the first L coefficients of the

time-domain correspondence are non-zero:

Wb(k) = FM

[

wb(k)
0

]

. (7)

Applying the overlap-and-save method for computing a block of mi-

crophone signal [22], we have

[

0

y(k)

]

=

[

0

s(k)

]

+QV F
−1

M

B−1
∑

b=0

Xb(k)Wb(k), (8)

where QV denotes the windowing matrix

QV =

[

0 0

0 IV

]

(9)

and IV is the identity matrix of size V ×V . The signal vectors y(k)
and s(k) in (8) then contain the V = M − L + 1 latest samples of

the microphone and the near-end signal, respectively:

y(k) = [y(kR− V + 1), y(kR− V + 2), . . . , y(kR)]T(10)

s(k) = [s(kR− V + 1), s(kR− V + 2), . . . , s(kR)]T (11)

Note that V represents the number of valid samples of y(k), which

result from fast convolution of the loudspeaker signals and the echo

path. Note that V > R is well possible for specific choices of the

DFT length M and the partition size L. In this case, y(k) contains

only R new samples, whereas V − R other valid samples have al-

ready been computed in the previous frame [14].

The frequency domain version of (8) is obtained by left multi-

plying it with the Fourier matrix FM :

Y(k) = S(k) + FMQV F
−1

M

B−1
∑

b=0

Xb(k)Wb(k)

= S(k) +

B−1
∑

b=0

Cb(k)Wb(k), (12)

where Cb(k) = FMQV F−1

M Xb(k) has been introduced.

In the following we define variables which will be useful for the

presentation of the Kalman filter. Let the coefficients of the adap-

tive filter partitions in the frequency domain be denoted by Ŵb(k).
Then, the frequency-domain coefficient error vector for the b-th par-

tition is defined as

Wb,r(k) = Wb(k)− Ŵb(k). (13)

The corresponding covariance matrix is given by

Pb(k) = E
{

Wb,r(k)W
H
b,r(k)

}

, (14)

where E{ } denotes the expectation operator. Regarding (12) and

(13), the frequency-domain error E(k) at the output of the echo

canceler can be expressed in terms of the coefficient error vector

Wb,r(k), i.e.,

E(k) = Y(k)−

B−1
∑

b=0

Cb(k)Ŵb(k) (15)

=

B−1
∑

b=0

Cb(k)Wb,r(k) + S(k). (16)

In general, the acoustic echo path, and, thus, the coefficients

Wb(k), are assumed to be slowly time-varying. Following [6], we

introduce a simple statistical Markov model for the dynamic behav-

ior of the filter partitions Wb(k) according to

Wb(k + 1) = Wb(k) +∆Wb(k). (17)

Analogously to [6], the desired stochastic state-space model for the

filter partitions is then defined by the Markov model in (17) together

with the linear observation model in (12).

2.2. Exact Kalman Filter Solution

Regarding the derivation of the Kalman filter for the partitioned-

block model with state-space architecture, i.e., Eqs. (17) and (12),

we can rely on a derivation presented in [20] for the problem of

multi-channel adaptive filtering based on acoustic state-space mod-

eling. Here, it is important to note that the partitioned-block imple-

mentation of a linear filter according to (12) can be interpreted as a

specific multiple-input single-output system, where the input signal

of the b-th channel (b-th partition) is given by Xb(k). Using [20, 21],

the equations describing the partitioned-block version of the Kalman

filter are then given for the b-th partition as

Ŵb(k + 1) = AŴ
+

b (k), (18)

Pb(k + 1) = A2
P

+

b (k) +Ψb,∆∆(k), (19)

Ŵ
+

b (k) = Ŵb(k) +Kb(k)E(k), (20)

P
+

b (k) = [IM −Kb(k)Cb(k)]Pb(k) , (21)
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with the so-called Kalman gain of the b-th partition,

Kb(k) = Pb(k)C
H
b (k)

[

B−1
∑

b=0

Cb(k)Pb(k)C
H
b (k) +ΨSS(k)

]

−1

,

(22)

where ΨSS(k) denotes the covariance of the near-end spectrum

S(k) and A is a transition parameter [6]. Ψb,∆∆(k) above is the

covariance of the temporal variations ∆Wb(k) of the acoustic echo

path. For this derivation of Kalman filter equations, we assumed that

the echo path variation in different partitions is

mutually uncorrelated and has zero mean, cf. [21].

3. PRACTICAL KALMAN FILTER IMPLEMENTATION

The above equations describe the theoretical framework for a

partitioned-block implementation of the Kalman filter. Unfortu-

nately, most of the M ×M matrices involved are not diagonal. This

makes an implementation in the AEC context rather unpractical.

Moreover, the filter update in (18) does not assure the earlier im-

posed time-domain constraint on the adaptive filter coefficients for

linear fast block convolution analogously to (7). This can lead to

ambiguities and, thus, to potential convergence problems during the

adaptation of the adaptive filter.

Analogously to [6], we therefore present a simplified version of

the exact Kalman filter in this section. It turns out, that the simpli-

fied version can be used to derive a suitable step-size control for the

update of each adaptive filter partition using the constrained version

of the frequency domain least mean square (LMS) algorithm [14].

It is reasonable to assume that the covariance matrices Ψss(k)
and Ψb,∆∆(k) are diagonal. Analogously to [6] we further utilize

approximations with respect to the excitation matrices Cb(k):

Cb(k) ≈
V

M
Xb(k), (23)

Cb(k)Pb(k)C
H
b (k) ≈

V

M
Xb(k)Pb(k)X

H
b (k). (24)

Substituting (24) and (24) into (21) and (22), we obtain a diagonal-

ized version of the Kalman filter with

P
+

b (k) =

[

IM −
V

M
Kb(k)Xb(k)

]

Pb(k), (25)

and the diagonalized Kalman gain

Kb(k) = Pb(k)X
H
b (k)

[

B−1
∑

b=0

Xb(k)Pb(k)X
H
b (k) +

M

V
ΨSS(k)

]

−1

(26)

respectively. The covariance matrix of the error spectrum E(k),
given in (16), can be expressed as

ΨEE(k) =

B−1
∑

b=0

Cb(k)Pb(k)C
H
b (k) +ΨSS(k), (27)

where we again assumed that the coefficients of different partitions

are uncorrelated and have zero mean. If we substitute the covariance

matrix of the error spectrum into (22), we obtain, together with (23),

an alternative representation of the Kalman gain (26) according to

Kb(k) =
V

M
Pb(k)X

H
b (k)Ψ

−1

EE(k). (28)

As shown in the following, we can immediately derive the

partitioned-block frequency-domain adaptive filter in its constrained

version [14] from the diagonalized version of the Kalman filter.

Noticing that the Kalman gain in its diagonalized form implicitly

includes a step-size matrix, we express the Kalman gain according

to
Kb(k) = µb(k)X

H
b (k), (29)

where µb(k) denotes the diagonal step-size matrix.

Regarding (18) and (20) and setting A = 1 for the update equa-

tion, the adaptation of the filter coefficients is then given by

Ŵb(k + 1) = Ŵb(k) +GLµb(k)X
H
b (k)E(k), (30)

where GL represents a pragmatic constraint matrix [14] to account

for the time-domain zero-padding (constraining) in (7).

It is straightforward to verify from (28) and (29) that the desired

step-size matrix µb(k) is given by

µb(k) =
V

M
Pb(k)Ψ

−1

EE(k), (31)

where it has been exploited that both, Xb(k) and ΨEE(k) are diag-

onal matrices.

The estimation of the system distance Pb(k) can be performed

based on (19) and (21). Analogously to the single-partition case

discussed in [6], we can determine the current coefficient error for

each partition and frequency individually. Using (19), (25), and (29),

we deduce a model-based recursive system distance estimator as

Pb(k + 1) = A2

(

IM −
V

M
µb(k)X

H
b (k)Xb(k)

)

Pb(k)

+Ψb,∆∆(k). (32)

As proposed in [6], the innovation term Ψb,∆∆(k) is assumed to be

a scaled version of the current covariance of the adaptive filter:

Ψb,∆∆(k) = (1−A2)Ψb,ŴŴ (m, k). (33)

The matrix Ψb,ŴŴ (k) can be estimated from a temporally smoothed

version of the squared magnitude of the adaptive filter coefficients,

Ψb,ŴŴ (k) ≈ diag
{

Ŵb(k)
}

diag
{

Ŵ
H
b (k)

}

. (34)

Interestingly, the step-size matrix in (31) is very similar to the opti-

mum step-size derived in [15] for minimizing the mean-square coef-

ficient error. However, the proposed Kalman filter additionally pro-

vides the required system distance as an inherent building block.

4. RESIDUAL ECHO SUPPRESSION (RES) PART

In practice, the AEC is not always able to completely cancel the echo

from the microphone signal. Even when the length of the adaptive

filter can sufficiently capture the room impulse response, residual

echoes remain due to the time-varying nature of the acoustic echo

path and the presence of observation noise given by the near-end

signal. In order to remove these residual echoes, a suppression filter

H(m, k) is commonly applied to the AEC output spectrum:

Z(m, k) = H(m, k)E(m, k). (35)

It is well-known that the Wiener solution for the residual echo sup-

pression filter H(m, k) is given by, e.g., [3, 6],

H(m, k) =
ΦSS(m, k)

ΦEE(m, k)
, (36)

where ΦSS(m, k) and ΦEE(m, k) denote the power spectral densi-

ties (PSD) of the near-end signal s(n) and the AEC output e(n).
Next, we present an interesting relation between the step-size

parameters µb(m, k) of the partitions, i.e., the elements on the diag-

onal of µb(k), and the optimum residual echo suppression filter.

1311



−1

0

1

0 2 4 6 8 10 12 14 16
−1

0

1

time [s]

a)

b)

Fig. 2. a) Microphone signal, b) Near-end speech signal.

Obviously, the elements of the diagonal step-size matrix accord-

ing to (31) can be written as

µb(m, k) =
V

M

Pb(m, k)

ΨEE(m, k)
. (37)

As discussed in [6], the following relations between the PSDs and

the elements on the main diagonal of the corresponding covariance

matrices approximately hold:

ΨSS(m, k) = V ΦSS(m, k), (38)

ΨEE(m, k) = V ΦEE(m, k), (39)

Pb(m, k) = MΦb,r(m, k). (40)

Introducing (39) and (40) into (37) yields

µb(m, k) =
Φb,r(m, k)

ΦEE(m, k)
. (41)

From (27), using the approximation (24), we further notice that the

PSD of the error signal can be expressed in terms of the PSD of the

coefficient error and the PSD of the near-end signal:

ΦEE(m, k) =

B−1
∑

b=0

Φb,r(m, k)|Xb(m, k)|2 +ΦSS(m, k). (42)

Considering (36), (41), and (42), we obtain a simple relation be-

tween the step-size parameters of each partition and the optimum

echo suppression filter:

H(m, k) = 1−

B−1
∑

b=0

µb(m, k)|Xb(m, k)|2. (43)

5. SIMULATION RESULTS

We present simulation results for the proposed echo control struc-

ture based on Kalman-AEC (K-AEC) and RES. The echo signal is

simulated by convolving the loudspeaker signal (clean speech) with

a measured room impulse response of an office with a reverberation

time of about 300ms. The signal-to-echo ratio during double-talk

is about 0 dB and white noise has been added to the microphone to

yield 25 dB near-end SNR. The sampling rate is 16 kHz. The AEC

has been implemented with a partition-size equal to the frame shift,

i.e., L = R = 256 samples. The DFT length is 512. The AEC

uses B = [1, 2, 5, 10, 15] partitions, which correspond to modeled

time spans of [16, 32, 80, 160, 240]ms, respectively. Adaptive fil-

ters with up to 3840 taps are used here, which is significantly more

than in previous Kalman filters [6, 20, 21], where less than 1000 taps

were used. The transition parameter is A = 0.999.

The microphone and the near-end signal are illustrated in

Figs. 2a and 2b, respectively. Fig. 3a depicts the system distances

‖w − ŵ(n)‖2/‖w‖2 corresponding to the above simulation setup,

−20
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B
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Fig. 3. System distances (SD) for a) K-AEC, with B =
[1, 2, 5, 10, 15] and b) K-AEC and R-AEC (with and without NE-

VAD), with B = 15, obtained for an echo control scenario.

where ŵ(n) is the time-domain representation of the adaptive fil-

ter. As expected, the achievable system distance decreases with an

increase in the number of partitions used.

Fig. 3b depicts the system distances for the K-AEC and a refer-

ence AEC (here referred to as R-AEC), where the stepsize is com-

puted according to [23]. Two R-AEC variants are shown: 1) without

a near-end voice activity detector (NE-VAD) and 2) with an ideal

NE-VAD. The ideal NE-VAD avoids divergence of the R-AEC dur-

ing double-talk or near-end single-talk by freezing the adaption when

the near-end speaker is active. However, in practice the system dis-

tance of the R-AEC will be higher due to a non-ideal NE-VAD. The

inherent step-size control in the K-AEC prevents the adaptive filter

from divergence during double-talk or near-end single-talk, but it

still allows the AEC to converge sufficiently fast to an accurate so-

lution. Its performance is almost equivalent to the R-AEC with an

ideal NE-VAD.

0 2 4 6 8 10 12 14 16
0

20

40

60

E
R

L
E

 [
d

B
]

time [s]

 

 
K−AEC

K−AEC+RES

Fig. 4. ERLE at K-AEC and RES output, with B = 15.

Finally, Fig. 4 depicts the echo return loss enhancement (ERLE)

[5] computed for the K-AEC and RES outputs. K-AEC provides an

outstandingly stable baseline performance. The ERLE at the RES

output is significantly higher than at the K-AEC output, especially

during the far-end single-talk, which signifies the removal of the

residual echo almost entirely. Although not shown here for brevity,

the RES does not significantly affect the near-end signal.

6. CONCLUSIONS

The partitioned-block filter structure is often preferred in implemen-

tations of acoustic echo controllers to maintain simultaneous con-

straints on delay, computational complexity, memory requirements,

and numerical stability. This paper adopted the larger framework of

acoustic state-space modeling, which can comprehensively represent

echo path variations and observation noise, to the partitioned-block

structure. We found structural equivalence with multi-channel adap-

tive filter models known from stereophonic echo cancellation prob-

lems. We thus used the analogy to deduce, implement, and validate

a complete echo cancellation and residual echo suppression system

in state-space partitioned-block architecture.
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