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ABSTRACT
Recently, sparsity based classification has been applied to
video anomaly detection. A linear model is assumed over
video features (e.g. trajectories) such that the feature repre-
sentation of a new event is written as a sparse linear com-
bination of existing feature representations in the dictionary.
Sparsity based video anomaly detection shows promise but
open challenges remain in that existing methods assume ob-
ject specific and class specific event dictionaries making them
applicable mostly in highly structured scenarios. Second,
using conventional sparsity models on matrices/vectors, the
computational burden is often high. In this work, we advocate
a more general and practical sparsity model using a low-rank
structure on the matrix of sparse coefficients. We find that en-
forcing a low-rank structure can ease the rigidity of traditional
row-sparse constraints on sparse coefficient vectors/matrices.
Because low-rank matrices are of course not always sparse,
an additional l1 regularization term is added. Further, if rank
is substituted by its convex nuclear norm alternative, then sig-
nificant computational benefits can be obtained over existing
methods in sparsity based video anomaly detection. Exper-
imental evaluation on benchmark video datasets reveal, our
method is competitive with state-of-the art while providing
robustness benefits under occlusion.

1. INTRODUCTION

Vast amounts of video footage are collected and analyzed for
traffic violations, accidents, crime, terrorism, vandalism, and
other suspicious activities. An active area of research with-
in this domain is video anomaly detection, which refers to
the problem of automatically finding patterns in data that do
not conform to expected behavior, and that may warrant spe-
cial attention or action. Video anomaly detection involves en-
coding an event followed by a decision rule often facilitated
by a model. Approaches include the use of finite state ma-
chines [1], Markov chain models [2], hierarchical Bayesian
models [3], decision trees [4], Hidden Markov Model (HM-
M) [5], infinite hidden Markov model [6] and Support Vector
Machines (SVM) [7]. An excellent overview of video anoma-
ly detection techniques can be found in [2].

RESEARCH WAS SUPPORTED BY A GRANT FROM THE XEROX
RESEARCH CENTER IN WEBSTER, NY. THIS PAPER CONTAINS HY-
PERLINKS TO EXTERNAL VIDEOS.

Relation to Prior Work: Sparse reconstruction techniques
[8], [9], [10] have recently been employed in video anoma-
ly detection. The fundamental premise underlying these
methods is that any new feature representation of a nor-
mal/anomalous event can be approximately modeled as a
(sparse) linear combination of pre-labeled feature representa-
tions (of previously observed events) in a training dictionary.
Li et al. [8] use object trajectories as event descriptors while
Zhao et al. [9] use features extracted from spatio-temporal
volumes. The approaches in [8], [9] were motivated by s-
parsity based face recognition proposed by Wright et al. [11]
which demonstrated sparse representations could exhibit
robustness to significant amounts of noise and occlusion.
Extensions of vector sparsity to multi-task scenarios, e.g.
multi-object anomaly detection have been developed [10]
which employ a row-sparse structure on the sparse coefficient
matrix.

Motivation and Contribution: Sparsity based video anoma-
ly detection shows promise but open challenges remain in
that existing methods assume object specific and class specif-
ic event dictionaries making them applicable mostly in high-
ly structured scenarios. Second, using conventional sparsity
models on matrices/vectors, the computational burden is often
high. In this work, we advocate a more general and practical
sparsity model using a low-rank structure on the matrix of
sparse coefficients. We find that enforcing a low-rank struc-
ture can ease the rigidity of traditional row-sparse constraints
on sparse coefficient vectors/matrices. A significant practical
benefit with the proposed method is that it is not necessary to
assign class labels to the normal trajectories, and therefore the
manual effort in building the training dictionary is much re-
duced. All the normal trajectories are collected together as a
big dictionary, and there is no need to group training trajecto-
ries (or events) into different classes as is done in [8], [9], [10].
Because low-rank matrices are of course not always sparse, an
additional l1 regularization term is added. Further, if rank is
substituted by its convex nuclear norm alternative, then sig-
nificant computational benefits can be obtained over existing
methods in sparsity based video anomaly detection. Experi-
ments on benchmark video datasets reveal that our method is
competitive with state-of-the art while providing robustness
benefits under occlusion.
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2. SPARSITY-BASED ANOMALY DETECTION

In the rest of the paper, we will focus on object trajectories
as the event encoding or video feature of choice. Let each
trajectory representation lie in RN , and t denote the number
of training samples (i.e. example trajectory representation-
s) from each of k different classes, i.e. behavior patterns in
a video which may be normal or anomalous. The t training
samples (trajectory representations) from the i-th class are ar-
ranged as the columns of a matrix Ai ∈ RN×t . The dictionary
A∈RN×T (T = kt) of training samples from all classes is then
formed as follows: A = [A1 A2 . . .Ak].

Given a sufficient number of training samples from the m-
th trajectory class, a test image y ∈ RN from the same class
is conjectured to approximately lie in the linear span of those
training samples. Any trajectory feature vector is synthesized
by a linear combination of the set of all training trajectory
samples as follows:

y≈ Aααα = [A1 A2 . . .Ak]


ααα1
ααα2
...

αααk

 , (1)

where each αααi ∈ Rt . Typically for an example trajectory
y, only one of the αααi’s will be active (corresponding to the
class/event from which y is generated). Thus the coefficien-
t vector ααα ∈ RT is modeled as sparse and is recovered by
solving the following optimization problem:

α̂αα = argmin
ααα
‖ααα‖0 subject to ‖y−Aααα‖2 < ε, (2)

where the objective is to minimize the number of non-zero
elements in ααα. The residual error between the test trajectory
and each class behavior pattern is computed to find the class
to which the test trajectory belongs:

ri(y) = ‖y−Aiα̂ααi‖2 i = 1,2, . . . ,K (3)

Fig. 1 shows an example of event classification using the
sparsity model. The training dictionary consists of 2 classes,
each with 4 different trajectories. The test trajectory can be
well represented by the linear combination of trajectory no. 1
and trajectory no. 3 from class 1 (see Fig. 1). This is infact
tantamount to saying that the coefficient vector ααα is indeed
sparse - in this example, two of eight entries being active.

3. LOW RANK SPARSITY PRIOR FOR VIDEO
ANOMALY DETECTION

3.1. Motivation: Low Rank Sparsity Prior

The aforementioned set-up in (1)-(3) assumes that training is
available from both normal and anomolous events and hence
anomaly detection reduces to a classification problem. In the

Fig. 1. An example illustration of trajectory classification us-
ing a sparse reconstruction model.

Fig. 2. (a) structured scenario (b) unstructured scenario.

absence of training from anomalous events (the more prac-
tical scenario), outlier rejection measures [9], [10] on the s-
parse vector ααα may be used to detect anomalies. A care-
ful preparation of the dictionary A is neverthless needed of-
ten with training examples that are manually labeled to be-
long to particular event classes. Multi-object or multi-view
anomaly detection leads to a sparse coefficient matrix (and
not vector), in those cases training dictionaries are often la-
beled not only per class but also per object [8], [10] lead-
ing to a row-sparse structure on the coefficient matrix. Such
elaborate preparation of the dictionary is sometimes unreal-
istic and invariably burdensome requiring a pre-analysis of
video footage prior to anomaly detection. Fig. 2(a) (the video
is available at: http://youtu.be/M6_PJigg5CY) shows an
example video frame of a structured scenario (detection of
stop sign violations) where preparation of a dictionary clearly
separated into class-specific sub-dictionaries is possible. In
many other settings however, multiple trajectories are simul-
taneously extracted and a clear separation into normal event
classes is difficult. An example of a video frame from such
a scenario is shown in Fig. 2(b) (the video is available at:
http://youtu.be/jEzLkWF65Io).

We therefore seek a more general and practical sparsi-
ty prior which can deal with unstructured scenarios. Note
that, row-sparse matrices that have been used in [9], [10] for
anomaly detection are also low-rank. Inspired by this obser-
vation and known connections between low-rank and sparse
matrices [12], we propose using a low rank sparsity prior.
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3.2. Low Rank Sparsity Prior for Anomaly Detection

In the proposed framework, there is no need to group training
trajectories into different normal event classes. All observed
training trajectories corresponding to normal events are col-
lected together as a big dictionary: A ∈ RN×T . We also col-
lect M test trajectories extracted from the video into a matrix
Y = {yi} ∈ RN×M, i = 1, . . . ,M.

Under a linear model Y ≈ AS, and given sufficient train-
ing, the coefficient matrix S ∈RT×M is expected to be sparse.
Making a departure from the typical ‖‖row,0 norm, we pro-
pose to use a low-rank structure to measure the sparsity of S.
A couple of examples of simultaneously sparse and low rank
matrices are:

Then, we propose to replace (2) by:

minimize rank(S)
subject to ‖Y−AS‖F ≤ ε,

(4)

A convex relaxation of (4) can be obtained via subsituting
rank(X) by ‖X‖∗ = ∑i σi(X) (where ‖‖∗ denotes nuclear nor-
m and σi(X) is the i-th singular value of X) [13]. This results
in a convex optimization problem:

minimize ‖S‖∗
subject to ‖Y−AS‖F ≤ ε.

(5)

While low-rank and sparse matrix structures often simulta-
neously exist (as is expected here as well), in general the two
are not the same, and low-rank does not imply sparsity. To en-
courage sparse matrices which are simultaneously low-rank,
we further add a l1 regularization term to the cost function and
convexity still holds:

minimize ‖S‖∗+λ‖S‖1
subject to ‖Y−AS‖F ≤ ε.

(6)

Anomaly Detection: Once we get the optimal coefficien-
t matrix Ŝ, the recovered trajectory can be computed using
columns of Ŝ = {ŝ1, ..., ŝM}:

ŷi = Aŝi, (7)

where those test trajectories which are very similar to the re-
covered trajectories can be regarded as normal trajectories.

‖yi− ŷi‖2

‖yi‖2
< τ→ yi is normal. (8)

Computational Complexity:1 The problem in (6) can in fac-
t be cast as a semidefinite program (SDP) [14]. This semi-

1A full comparison of complexity entails memory, number of cannonical
operations (adds/multiplies) and their interaction with the implementation ar-
chitecture. Such analysis is beyond the scope of this article and will be con-
sidered in future work. We present a comparison of popular algorithms in
terms of the number of fundamental operations (multiplies).

definite program can then be solved using a “custom” interi-
or point method [15], [16] and has an average complexity of
O(N2T M) where N,T,M are as stated above.

On the other hand, (2) (minimizing the l0 norm) is well-
known to be an NP-hard problem. Thus the l1 norm is
often used as an effective approximation to l0. Several fast
l1-minimization algorithms have been published [17]. The
Homotopy method is amongst the most popular algorithm-
s and has a computational complexity of its j-th iteration
as O( jN2 + jNT ) [18]. Let J denote the number of itera-
tions, the total complexity becomes: O(∑J

j=1( jN2 + jNT )) =
O(J2N2+J2NT ). Here, J depends on the number of non-zero
elements in ααα, so O(J) =O(N). Therefore, the computational
complexity of evaluating one test trajectory (event representa-
tion) using (2) is O(N4+N3T ). Since there are M trajectories,
the total computational complexity is O(N4M+N3T M). The
proposed method hence has much lower complexity, this is
experimentally confirmed in Section 4.

4. EXPERIMENTAL RESULTS

The datasets used in our experiments are: 1.) The well-known
Public Data Set for Traffic Video (PDTV) [19] and 2.) The
Xerox Stop Sign data set ( while this video data set is propri-
etary, an example video clip is available at: http://youtu.
be/M6_PJigg5CY). Figs. 3 (a) and (b) show an example
anomaly in PDTV data, where a car fails to yield to oncoming
car while turning left. Figs. 3 (c) and (d) show an example
anomaly in Xerox Stop Sign data, where a driver backs his
car in front of stop sign.

In all subsequent experiments, object trajectories are
used to represent events. We use well-known techniques to
extract trajectories [20] as a collection of coordinate pairs
[x(t),y(t)]. We approximate a raw trajectory using a basic
B-spline function [21] with 50 knots (50 x-coordinates and
50 y-coordinates) and these knots are finally used to form the
trajectory feature vector.

4.1. Comparison against a State of the Art Trajectory-
based Video Anomaly Detection Technique

Our proposed algorithm is called low rank sparsity prior (ab-
breviated to LRSP). We compare LRSP against a widely cited
method by Piciarelli et al. [7] which is based on trajectory ex-
traction and one class SVMs. For the experiment involving
the PDTV data set, we obtain a training dictionary consisting
of 319 normal event trajectories (No training corresponding
to anomalous events was used). 117 normal trajectories and
24 anomalous trajectories are used as independent test data.
The confusion matrices of LRSP are compared with Piciarelli
et al [7] in Table 1. The benefits of LRSP are readily apparent.

For the Xerox Stop Sign data set, the training dictionary
comprises 72 normal trajectories. We specifically conduct
this experiment to compare the performance of the two meth-
ods when object occlusion is involved, i.e. occluded trajec-
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Fig. 3. (a) (b): Example anomaly in PDTV data, (c) (d): Ex-
ample anomaly in Xerox Stop Sign data, (e) (f): Example
frames that show object occlusion.

Table 1. Confusion matrices of PDTV data
LRSP Piciarelli et al. [7]

Normal Anomaly Normal Anomaly
Normal 78.6% 37.5% 70.9% 41.7%

Anomaly 21.4% 62.5% 29.1% 58.3%

tories are used as our test data. Figs. 3 (e) and (f) show an
example where a car is occluded by another car (the video
is available at: http://youtu.be/4Azh2yZjA4o). An in-
dependent set of 13 normal but occluded trajectories and 6
anomalous but occluded trajectories are used to test our ap-
proach. The confusion matrices of both methods - LRSP and
the method in Picarelli et al. are reported in Table 2. In this
case LRSP is vastly better. This can be reasoned as follows:
The optimization problem in (6) is well-conditioned. A set
of occluded trajectories Yo can be thought of as a perturba-
tion on non-occluded trajectories Y and if ‖Yo−Y‖2 is small
enough, then by perturbation theory the solution Ŝ under oc-
clusion should only change slightly. This robustness of LRSP
is a major practical benefit in real-world surveillance videos
for example where noise and occlusion are typical.

4.2. Performance Variation with Regular Parameter λ

In our optimization problem in (6), there is parameter λ which
controls the relative importance of ‖ · ‖∗ and ‖ · ‖1 terms. In

Table 2. Confusion matrices of Stop Sign occluded data
LRSP Piciarelli et al. [7]

Normal Anomaly Normal Anomaly
Normal 76.9% 33.3% 61.5% 50.0%

Anomaly 23.1% 66.7% 38.5% 50.0%

Table 3. Confusion matrices of Xerox Stop Sign data
LRSP ESP

Run time 37 seconds 159 seconds
Normal Anomaly Normal Anomaly

Normal 88.2% 25.0% 91.2% 25.0%
Anomaly 11.8% 75.0% 8.8% 75.0%

Fig. 4, we plot the detection rate curves against the value of
λ for PDTV data. Fig. 4 reveals that λ ∈ [0.25,0.75] leads to
good performance. Both excessively low and high values of
λ lead to a loss in performance. In particular, when λ is large,
the cost function reduces largely to the ‖ ·‖1 matrix norm and
the performance drop is very significant. This emphasizes
the value of the low-rank term which allows greater generali-
ty over row-sparsity and can capture sparse matrix structures
arising in real-world scenarios. Note the results of LRSP in
Tables 1 - 3 are reported using the “best” λ.

Fig. 4. Detection rates curves with respect to the value of λ

4.3. Computational Benefits and Trade Off

We now compare our proposed method against existing s-
parsity models as described in Section 2 (abbreviated to E-
SP2) [8–10]. Since ESP can only detect video anomaly in
structured scenarios, the Xerox Stop Sign data set is used to
test both LRSP and ESP.

For the Xerox Stop Sign data set, the training dictionary
contains 9 normal event classes (containing 8 trajectories
each) and 1 anomalous trajectory class (containing 4 trajec-
tories). An independent set of 34 normal trajectories and 8
anomalous trajectories are used to test our approach. Table 3
shows the confusion matrices and run time (total run time of
running all the 42 test trajectories) of LRSP and ESP. We can
see that the proposed LRSP method runs much faster than
the ESP with a small loss in detection rates. This is expected
because ESP has the benefit of pre-labeled event classes. In
structured scenarios, the performance of ESP in fact serves as
the practical upper bound for LRSP.

2Although methods in [8], [9] and [10] use varying event representations,
their underlying sparsity model is the same. We use the abbreviation “ESP”
to represent these three techniques.
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