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ABSTRACT

In this paper, we propose an accurate estimation of the cam-
era motion in a dynamic environment from RGB-D videos.
To better exclude the moving object portion of the scene from
the stationary background, we use image segmentation. Next,
dense pixel matching between the current and reference color
images is performed to construct the 3D point cloud for dense
motion estimation. At the end, we perform motion optimiza-
tion, i.e., to find the combination of motion parameters that
minimizes the remainder difference between the reference
and the current image. We validate our proposed method
across two benchmark sequences and show that our approach
is more accurate than the existing solutions. We show that
our method reduces the RMSE by 6.55% and 7.16% for
stationary and dynamic scenes, respectively.

Index Terms— Visual odometry, Dynamic scene, ICP,
Segmentation, motion optimization

1. INTRODUCTION

The problem of estimating a moving rig’s motion has been
studied for the past three decades. Several methods have
been developed for this purpose, such as wheel odometry,
global positioning system (GPS), inertial measurement units
(IMUs) and more recently, visual odometry (VO). Visual
odometry is a term defined by Nister [1] which explains the
process of estimating the relative pose of a moving vehicle
using only the images from one (or more) camera(s) mounted
on the vehicle between different time intervals. There have
been many studies on visual odometry for stationary envi-
ronments using monocular, stereo [2, 3, 4, 30, 9], and more
recently, RGB-D [5, 8] cameras including optical flow-based
and sparse feature-based methods. Another popular method
is different varieties of iterative closest points (ICP) where
the corresponding points in the two consecutive images are
iteratively found. In [11], an energy-based method based on
minimizing the underlying backprojection error is presented.
Despite the vast pool of existing methods for stationary envi-
ronments, the dynamic environment where in addition to the
camera motion, the objects in the scene are also moving is
far less explored. In this paper, we present a novel method to
estimate the motion of an RGB-D camera in a non-stationary
environment using image segmentation and dense ICP mo-
tion estimation for each segment. The main purpose of using
image segmentation is to cluster the correlated image pixels
into distinct segments in order to separate the moving object
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segment from the stationary background. Even though there
is no guarantee that the moving object is categorized into
a single segment, based on the assumption that the moving
object only occupy a small portion of the image with respect
to the background, it is expected that the majority of the seg-
ments belong to the stationary part of the scene. The main
contributions of the proposed method are as follows.

• We use image segmentation to separate the moving part
of the scene from the stationary part.

• We perform the motion estimation per segment, hence
the pixels from the moving object will be occluded
from the final motion estimation

• We optimizing the motion parameters by minimizing
the remainder error using the motion parameters of
each segment.

The remainder of the paper is organized as follows. In Sec-
tion 2 the related work is reviewed. Section 3 shows the prob-
lem formulation and the details of the proposed algorithm is
presented in Section 4. The results are shown in Section 5.

2. RELATED WORK

The majority of the existing works on visual odometry fo-
cused on ground and micro-air vehicles for stationary scenes
[14, 27, 24, 10]. The task is performed by estimating the
rigid body transformation between two images at consecutive
time intervals. One of the most popular methods for VO is
feature tracking accompanied by an outlier removal method,
e.g., RANSAC [16, 17] and graph-based consistency algo-
rithm [15]. The advantage of the feature tracking method is
that it only uses a fraction of total number of pixels per frame
for motion estimation which significantly reduces the compu-
tation time. However, interest points in the image are mostly
at the edges or corners of the objects in the scene. In RGB-D
cameras, if the objects are close to the camera, the depth in-
formation at the borders of the objects are lost due to parallex
between the color and infrared camera, therefore, several of
the selected feature points do not have a corresponding depth
information. Thus, the number of suitable feature points re-
duces dramatically which in turn result in inaccurate estima-
tion. Dense estimators, however, use the information of the
whole image for motion estimation [27, 11, 12]. Steinbrucker
et al. [11], uses a direct method which aligns images together
to estimate VO using the color and depth images obtained
from Microsoft Kinect sensor for stationary scenes. An alter-
native dense method is to use ICP algorithm to align 3D point
clouds [28, 29] which is used in our proposed algorithm. In
the ICP method, first the 3D point clouds of the correspond-
ing points in the current and reference images are constructed.
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Then, these two point clouds are iteratively aligned to find the
nearest neighbor between them.

In contrast to static VO, dynamic visual odometry has not
been investigated extensively. Due to the fact that many of the
aforementioned methods assume the motion to be rigid body
motion, moving objects within the scene cause erroneous mo-
tion parameters. This becomes more important since in many
applications of VO, estimation error will propagate to the tra-
jectory of the overall motion for simultaneous localization
and mapping (SLAM). In [31], Kitt et al. proposed a method
for VO for dynamic environment using feature classification
on stereo images. However, in this method, the classifier
needs to be learned in advance which includes hand labeling
training examples. Kerl et. al [5] proposed a direct motion
estimation method with a probabilistic formulation where a
motion prior based on a constant velocity model is used.

3. PROBLEM FORMULATION

The inputs of our proposed method are two pairs of image,
(Ik, Dk) and (Ik+1, Dk+1) obtained by a RGB-D camera (i.e.,
Microsoft Kinect). Ik and Dk represent the color (RGB) and
the corresponding depth map at time k, respectively. The
camera motion is defined by a 3 × 3 rotation matrix, R ∈
SO(3) and a 3 × 1 translation vector, t ∈ R3. For each 3D
point in the scene at time k, Pk(X,Y, Z), the corresponding
point in the image plane is pk(x, y) as shown in Eq. (1).

Z = D(x, y)

(X,Y, Z)> = (
(x+ cx) · Z

fx
,
(y + cy) · Z

fy
, Z)>

(1)

Here, fx and fy are camera’s focal length and (cx, cy) is the
principal point of the camera. We define T as the transfor-
mation between the images at two consecutive time intervals
which is shown in Eq. (2).

T =

[
R t
0 1

]
(2)

where 0 is a 1 × 3 zero vector. The camera motion for each
3D point can be described by Eq. (3) where [P 1]> is the
homogenous coordinate of point P .[

Pk+1
1

]
= T

[
Pk
1

]
(3)

The goal is to find the transformation matrix that accurately
describes the motion of the camera.

4. VISUAL ODOMETRY FOR RGB-D

In this section, the details of the proposed method is pre-
sented. Our approach consists of the following steps.

• Image segmentation: The input image is divided into
n segments in order to separate the moving parts of
the scene from the stationary part. The number of seg-
ments is decided based on the similarities between ele-
ment within a segment and dissimilarities between the
neighboring segments.

• Dense 3D point cloud construction: To construct the
3D points, the pixels of the reference and current
frames are matched. The coordinates of the corre-
sponding points and the depth information from the
depth map images (Dk) construct the 3D point cloud.
The object boundary points with no depth information
are ignored in point cloud construction.

• Motion estimation: The motion of each segment is es-
timated using the ICP method. The obtained motion
parameters (Ri and ti i = 1, · · · , n) are sorted based
on the number of the 3D points used for motion estima-
tion.

• Optimization of the motion parameters: To find the true
motion parameter from theRi and Ti, the current image
is warped by each transformation from the segments.
The final motion parameter set is the combination of the
motion parameters that minimizes the remainder differ-
ence between the reference image and warped current
image.

4.1. Image Segmentation

In order to separate the motion of the moving object from
the rest of scene, the input RGB images, It, are first seg-
mented. There are several different image and video seg-
mentation methods available [18, 19, 20]. In this paper we
apply the segmentation method presented in [18] by Felzen-
szwalb et al. which only uses the spatial information of the
RGB images. This method uses graph-based representation
of the image as a predicate for measuring the evidence for
a boundary between two regions. The predicate is based on
the similarity between the elements within a segment and dis-
similarity between the elements of the neighboring segments.
For the segmentation method one can set different parameters
that define the minimum size of the segments or the dissim-
ilarity measurement between the two neighboring segments.
After Segmentation, if the moving object is segmented into
multiple segments rather than a single one, based on the as-
sumption that the moving object is small with respect to the
stationary part of the scene, it is highly expected that we have
segments that only contain the background (stationary) pixels.
Note that this depends on the minimum size of the segments.
In Section 5, we show the values that we have used in our
implementation.

4.2. Dense 3D Point Cloud Construction

After segmentation, corresponding points between all pixels
in each segment in It and pixels in It+1 should be computed.
The similarity measure for the matching process is normal-
ized cross correlation (NCC) as shown in Eq. (4).∑

(i,j)∈W I1(i, j) · I2(x+ i, y + j)

2

√∑
(i,j)∈W I21 (i, j) ·

∑
(i,j)∈W I22 (x+ i, y + j)

(4)

Due to the arbitrary nature of the camera motion, the search
area to find the corresponding point in the current image (with
maximum NCC value) is a square window instead of the hor-
izontal scanline used in the rectified images. Once the cor-
responding points are established, the depth images, Dk and
Dk+1 are used to construct the 3D point cloud. Note that, the
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points where depth information is not available are discarded
from the point cloud.

4.3. ICP motion estimation

The iterative closest point (ICP) algorithm is widely used for
3D shape alignment problem. The main goal of the method
is to estimate the relative pose between two 3D sets of points.
The ICP was introduced by Chen and Medioni [21] and
Besl and Mckay [22] and many ICP variants have since been
proposed [28]. In the algorithm, the relative transforma-
tion between two point clouds is iteratively estimated. More
specifically, corresponding pairs in overlapped area are recov-
ered using initial transformation based on geometric position.
Then, the relative rotation and translation are estimated by
minimizing error metric based on Euclidean distance between
each corresponding pair. The refined transformation param-
eters are then used in the next iteration. These processes are
repeated for a specific number of iterations. Due to the fact
that the camera motion between each time interval is small
in our experimental results, we used identity matrix and zero
vector for initial rotation matrix and translation vector respec-
tively. However, if the camera’s motion is fast, the previous
frame motion is used as the initial motion parameters.

4.4. Motion Optimization

Once the motion parameters for each segment is computed,
the final motion of the frame must be determined. In order
to find the final motion parameters, in the proposed method
we use a combination of all motion parameter candidates, Ri
and ti i = 1, · · · , n , that minimizes the difference between
the reference frame and the current warped frames (maximiz-
ing the photoconsistency) as shown in Eq. (5). The main rea-
son for using the linear combination of the motion parameters
is that in the segmented image, there are multiple segments
from the stationary sections of the scene that have similar size
(number of valid pixels in the point cloud) and similar (not
identical) motion parameters. By applying the linear combi-
nation we find the best motion parameters that maximizes the
photoconsistency. In order to increase the accuracy of the re-
sults, the motion parameters are sorted based on the (a) the
number of 3D points in the point cloud of each segment and
(b) the remainder error from the ICP. The estimations from the
smallest point cloud and largest remainder error are removed
from the optimization process.

ei = [Ik − I iw]2 (5)

where Iiw is the current warped image using transformation
Ti from Eq. (2) constructed from Ri and ti i = 1, · · · , n. In
order to obtain the current warped frame, Ik+1, in 2D coordi-
nate using the 3D motion parameters, the 3D point cloud of
the current image is constructed using the depth information,
Dk+1. Then, the obtained point cloud is transformed using
Ti. The transformed 3D point cloud is shown as Ti(Ik+1).
Then, Ti(Ik+1) is reprojected into image plane using Eq. (6)
and the camera parameters.

pi(x, y) = G(Pi(X,Y, Z))

pi(x, y) = (
Pixfx
Piz

− cx ,
Piyfy
Piz

− cy)
> (6)

where Px, Py and Pz are the x, y and z coordinates of the
points in the warped 3D point cloud and p(x, y) is the 2D
points in the reprojected image plane. The set of all p(x, y)
creates Iiw. The final transformation is a linear combination
of the Ti obtained for each segment. The best combination
is obtained by minimizing the final residual error as shown in
Eq. (7).

e = [Ik − Σαi I
i
w]2

Σαi = 1 (7)

where αi are the appropriate weights assigned to the transfor-
mation for each segment that minimizes residual error. The
minimization process is shown in Eq. (8). This results in the
correct motion parameters having a higher weight than those
from the moving object due to the assumption that the moving
object occupies a small portion of the scene.

min
α
e = min

αi

[Ik − Σαi I
i
w]2

min
α
e = min

αi

[Ik − Σαi Ti(Ik+1)]
2 (8)

The final transformation between Ik and Ik+1 is obtained as
shown Eq. (9).

T = Σαi Ti (9)

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

5.1. Experimental setup

In this section, the comparison results of the proposed method
and the method developed by Engelhard et al. [25] is pre-
sented. In our experiments, we use five different sequences
from the benchmark database [26]. The evaluation is done us-
ing the online tool from the benchmark database. In this paper
we show the results for only two sequences, fr1\desk2 (sta-
tionary sequence) and fr1\desk2\withPerson (dynamic
sequence). 1 Note that in this database the camera is cali-
brated and the color and depth image are both rectified and
synchronized (the images are from the same time stamp).
Therefore, the corresponding depth information of each pixel
(p(x, y)), is stored in the same pixel location ((x, y)) in the
depth image,D(x, y). There are no prior assumptions regard-
ing the camera motion (such as the velocity or direction of the
camera), the only assumption is that the moving parts of the
scene in the dynamic sequence are small with respect to the
image size. The resolution of both sequences are 640 × 480.
For comparison, the root mean square error (RMSE), the
average error (mean) and the standard deviation (std.) of the
obtained results from the proposed method and other method
are compared with the ground truth results from the database.
In the comparison process, the overall camera trajectories
are compared to each other (not frame-by-frame). Note that
in our proposed method, no drift reduction method is used
which would improve the results significantly.

5.2. Experiments

We evaluate the accuracy of the proposed method using
three benchmark sequences and compare the results with the

1The additional results are shown at our website (http:
//videoprocessing.ucsd.edu/˜haleh/Haleh_Azartash/
Research.html).
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ground truth and the existing method by Engelhard et al. [25].
In these experiments, the error between the estimated motion
and the reference ones is measured inm/s. For each segment,
we present the results for different segmentation option for
the minimum size of the segment, Smin (1/100)×, (1/200)×
and (1/300)× frame size of 640 × 480 . Note that having a
smaller Smin, the number of segments in each image would
increase. The effect of different Smin’s is shown in Figure 1
and Figure 2 for stationary and dynamic environments, re-
spectively. As shown in Figure 1d, the smaller value of Smin

(a) Original frame (b) Smin = 3072

(c) Smin = 1536 (d) Smin = 1024

Fig. 1: The effect of minimum segmentation size

yields small segments in the image (outline by the red line).
In the motion optimization process where Smin is 1024, αi
for the small blobs are much lower than the larger segments.
This is due to the fact that the larger segments have more
points in the 3D point cloud which results in a more accurate
motion estimation. In Figure 2, the person is moving in the

(a) Original frame

12

(b) Smin = 3072

(c) Smin = 1536 (d) Smin = 1024

Fig. 2: The effect of minimum segmentation size

frame and he occupies a small portion of the scene. As shown

in Figure 2b-Figure 2d, the persons’ silhouette is confined in
two segments, Segment 1 and Segment 2 in Figure 2b. As
expected, the αi values for these two segments are lower than
that of other segments. Also, the smaller blobs in Figure 2c
and Figure 2d has lower αi than those of larger segments.

According to the above discussion, it is shown that even
though the minimum value for the segment size results in dif-
ferent segmentation, its effect on the final motion parameters
is reduced by the optimization step for both static and dy-
namic scenes. Also, note that even though the area of the
moving person was not restricted into one segment, since the
transformation Ti for these segments was not aligned with
the rest of the image, the weight of these two segments in the
final T were insignificant.

The comparison results are shown in Table 1 and Table 2.
In the table the results of the proposed method for three dif-
ferent values of Smin are compared to the method proposed
in [25]. The table elements indicate the RMSE, mean and std.
values compared to the ground truth. For the stationery scene,
as shown in Table 1, comparing the results for different Smin
shows that for this sequence, since there is no motion in the
scene, the larger segmentation size has more accurate value.

Table 1: Motion estimation results for stationary scene
Segment Size RMSE Mean Std.
Smin 1024 0.012899 0.012941 0.006854
Smin 1536 0.01457 0.013086 0.006545
Smin 3072 0.014181 0.012803 0.0067002
Engelhard et al. [25] 0.015175 0.013485 0.006961
Error Reduction% 6.55 5.06 5.97

Table 2: Motion estimation results for dynamic scene
Segment Size RMSE Mean Std.
Smin 1234 0.009762 0.008521 0.006960
Smin 1536 0.096350 0.00898 0.005784
Smin 3072 0.010649 0.0089379 0.006084
Engelhard et al. [25] 0.011470 0.009643 0.006210
Error Reduction% 7.16 7.31 2.03

6. CONCLUSION

In this paper, we presented a new approach for visual odome-
try for dynamic environments. In the proposed approach, we
use image segmentation to separate the moving parts of the
scene from the static background. Then, dense motion estima-
tion using ICP is performed for each segment. In order to find
the final motion, the current image is warped with each candi-
date motion parameters from all segments and then the linear
combination of transformation that minimizes the difference
between the reference and current images is chosen as the fi-
nal motion transformation. The motion optimization process
assigns proper weights to each motion parameter candidate.
The experimental results show that the moving part of the
scene are isolated to a few segments and the assigned weights
for those segments are very small. We show that our proposed
method reduces the RMSE by 6.55% and 7.16% compared
with those of [25] for stationary and dynamic scenes, respec-
tively. Currently, the only drawback of our proposed method
is the execution time. For our future work, we plan to im-
plement the proposed method in real-time in order to make it
suitable for robot navigation.
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