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ABSTRACT

We propose in this paper a spatio-temporal pyramid repre-
sentation (STPR) of the video based Accordion image. The
Accordion image allows the pixels having a high temporal
correlation to be put in space adjacency. The STPR intro-
duces spatial and temporal layout information to the local
SIFT features computed on the Accordion image. It consists
in applying firstly, a temporal pyramid decomposition on the
video to divide it into a sequence of increasingly finer tempo-
ral blocks and secondly in performing a spatial pyramid rep-
resentation on the Accordion images relative to the temporal
blocks. The Multiple Kernel Learning approach is used to
combine the multi-histograms coming from different Spatio-
Temporal Pyramid levels. Experiments using the human ac-
tion recognition datasets (Hollywood2 and Olympic sports)
show the effectiveness of the proposed approach.

Index Terms— Human Action Recognition, Accordion
Image, Space-Time Descriptor, Motion, Spatio-Temporal
Pyramid Representation, Multi Kernel Learning.

1. INTRODUCTION

Recognizing human actions in realistic uncontrolled video
is a challenging problem in computer vision. Yet, in recent
years, many different space-time feature detectors (Harris3D
[1], Cuboids [2] and Hessian [3]) and descriptors (HOG (His-
togram of Oriented Gradients)/HOF (Histogram of Optical
Flow) [4, 5], Cuboids [2] and Extended SURF [3]) have been
proposed in the state-of-the art. Feature detectors usually
select the most salient Spatio-Temporal locations. Feature
descriptors detect shape and motion information in the neigh-
borhoods of selected points using usually spatial and temporal
image gradients as well as optical flow. The motion descrip-
tors are well suited to describe the human actions [6, 7, 8].
HOF descriptors characterize local motions. They are com-
puted by dividing the space time neigborhood of the Harris3D
interest points into small space-time regions and accumulat-
ing a local 1-D histogram of optic flow over the pixels of each
sub-region. Dalal et al. [9] proposed the Motion Boundary
Histograms (MBH) is a descriptor for human detection. The
MBH descriptor describes the relative motion between pixels

by computing the gradient of the optical flow. In [6], MBH is
used as motion descriptor for dense trajectories. Considering
that the spatial pyramid method [10] performs well in the
image classification, it was adapted [4, 11, 12, 6], with the
local space-time features to spatio-temporal domain. Indeed,
in the context of action recognition, spatio-temporal pyramid
(STP) is used to embed structure information of the video
action. Ullah et al. [11] propose decomposing the video into
region classes and increase local features with corresponding
region-class labels. The local features are extracted at mul-
tiple scale levels in space-time video pyramid. Chakraborty
et al. [12] introduce a novel vocabulary building strategy
by combining spatial pyramid and vocabulary compression
techniques to reduce the dimensionality of the feature space.
Recently, Wang et al. [6] propose to use Spatio-Temporal
Pyramid with the dense trajectory application and combina-
tion of different descriptors. In our previous work [14, 13],
the presented descriptor is based on the Accordion represen-
tation that transforms the video into a plan in order to put
pixels with temporal adjacency in a spatial neighbourhood.
Then, the Accordion representation is applied separately on
each elementary motion segment. The limitation inherent in
this method is the lack of spatial and temporal locations in the
video description. To surmount this problem, we propose in
this work to apply the spatio-temporal pyramidal representa-
tion (STPR) on the Accordion image. Indeed, video action is
described by many histograms of visual words obtained from
the different spatio-temporal grids of STPR. Afterwards, we
use Multi Kernel Learning approach (MKL) [15] to combine
the different histograms. To describe the motion information,
Harris3D interest points are detected on the video frames and
projected onto the Accordion image. After that, SIFT de-
scriptor [16, 17] is computed around the projected Harris3D
interest point.

This paper is organized as follows: in Section 2 an over-
all description of our proposed motion descriptor is given.
The experimental study and results are given in section 3 and
section 4. Finally, concluding remarks are presented.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 1279



2. OUR PROPOSED MOTION DESCRIPTOR

The graphical description of our motion descriptor compu-
tation is illustrated by Figure 1. Firstly, we proceed by the
detection of Harris3D interest points in the video frames.
These points are then projected on the Accordion representa-
tion of the video. Then, we compute SIFT descriptors around
the projected Harris 3D interest points. Afterwards, the IACC
is divided into the Spatio-Temporal Pyramid levels and a his-
togram of visual words is built for each level. Video action is
then described by many histograms of visual words obtained
from the different spatio-temporal grids of STPR. Finally, the
various histograms are combined in a Multi Kernel Learning
(MKL) framework to classify the videos into action classes.

Fig. 1. Description of the proposed framework.

The Accordion representation is presented in section 2.1.
In section 2.2, we present the computation steps of the pro-
posed motion descriptor. The spatio-temporal pyramidal
representation and the Multi Kernel Learning approach are
described in section 2.3.

2.1. Accordion Representation

The accordion representation [13] aims to put in spatial ad-
jacency the pixels having a high temporal correlation. It is
built by carrying out the temporal decomposition of the sig-
nal video. In a first stage, the video is transformed into tem-
poral frames (Figure 2a). Each one represents a 2D image

Fig. 2. The method of accordion representation: a) Video de-
composition b) Video transformation into an Accordion im-
age

that collects the video pixels having the same column rank in
all video frames. In a second stage (Figure 2b), the tempo-
ral frames are successively projected onto a plane called the
Accordion image (IACC) throughout this work.

Hence, Accordion transformation tends to transform tem-
poral correlation in the original video source into a spatial
correlation in the resulting 2D image IACC . The dimension
(H acc×W acc) of IACC is:(

H acc = H
W acc = W * NbF

)
(1)

whereH acc (height) andW acc (width) are the frame sizes;
NbF is the number of video frames.

Each point position (x, y) on every video frame i is pro-
jected onto the IACC using the Equation 2 that calculates the
IACC coordinates (x ACC, y ACC) of the projected point.
(x ACC, y ACC) is obtained such as x ACC is equal to x
and y ACC is equal to the position given to the frame column
y in the IACC .

Projection :
video→I ACC

(x, y, i) :

{
x ACC = x

y ACC = y +NbF ∗ (i− 1)

}
(2)

2.2. Descriptor computation

The motion descriptor is based on the computation of the his-
togram of gradient orientations in every local patch of the
IACC . It reflects the motion variation along the temporal axis
of the video. In a first step, we transform each video sequence
into an IACC . After that, we project the detected Harris 3D
interest points into the IACC . Afterwards, we define 16× 16
patches in the IACC on the spatial neighbourhood of the pro-
jected Harris3D interest points. To capture the motion infor-
mation from the IACC , SIFT descriptors are computed from
the 16× 16 patches. For that, every patch is sub-divided into
4 × 4 sub-regions (Figure 3). From each sub-region, an ori-
entation histogram with 8 bins is computed, where each bin
covers 45 degrees. Each sample in the sub-region is added
to the histogram bin and weighted by its gradient magnitude.
The 16 resulting orientation histograms are transformed into
128d vector. Finally, the vector is normalized to unit length
to achieve the invariance against illumination changes.

2.3. Histograms of Spatio-Temporal Pyramid and Multi
Kernel Learning

In this section, we describe the general Spatio-Temporal Pyra-
midal framework and we present the MKL approach used in
this work.
Spatio-Temporal Pyramidal Representation (STPR):
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Fig. 3. SIFT computation.

The STPR adds spatial and temporal structural information to

Fig. 4. Spatio-Temporal Pyramidal Representation (STPR).

the SIFT-ACC features. It consists in applying firstly a tem-
poral pyramid representation (TPR) on the video to divide it
into a sequence of increasingly finer temporal blocks and sec-
ondly in performing a spatial pyramid representation (SPR)
on the Accordion images relative to the temporal blocks.
For each temporal pyramid level, the video is divided into a
sequence of temporal blocks (Level1: 0 division, Level2: 2
divisions and Level3: 3 divisions) and each temporal block
is transformed into a IACC . Each IACC is then divided into
a sequence of increasingly finer spatial grids on each spatial
pyramid level (1×1; 2×2; 4×4), as shown in Figure 4. For
each spatial level, histograms of SIFT-ACC features found
inside the spatial grid cells of the IACC are concatenated to
form the spatial histogram relative to this IACC . Finally, for
each spatio-temporal pyramid level, the spatial histograms
computed for each IACC are horizontally concatenated to
form the spatio-temporal histogram.
Multi Kernel Learning (MKL):
The final representation of the video V is the set of his-

tograms hV =
{
hVl
}

, where each histogram hl is computed
for each level l. We use a MKL to combine the multi-
histograms coming from different spatio-temporal pyramid
levels. Our aim is to learn a SVM classifier [18] where,
rather than using a pre-specified kernel, the kernel between
the histograms of two videos V and U is learnt to be a linear
combination of l kernel kl:

K
(
hV , hU

)
=

9∑
l=1

βlkl
(
hVl , h

U
l

)
, s.t βl ≥ 0,

9∑
l=1

βl = 1

where βl is the weight for each kernel optimized during the
training process. In our implementation case, the kernel kl
corresponds to a chi-square RBF kernel of the form:

kl
(
hVl , h

U
l

)
= exp−γχ(h

V
l ,h

U
l )

Where γ is fixed to the mean of the pairwise distances
between histograms and χ is the chi-square distance.

3. EXPERIMENTAL STUDY

In our experiments, to implement the bag-of-features model,
we use an identical pipeline as described in [19]. For that,
we cluster a subset of 100, 000 randomly selected training
features with the k-means algorithm. We fix the number of
visual words per descriptor to 4000 which has shown [19] to
empirically give good results for a wide range of datasets and
descriptors. To increase precision, we initialize k-means 8
times and keep the result with the lowest error. The BOW
[20, 21, 22] representation then assigns each feature to the
closest vocabulary word features. The resulting histograms
of visual word occurrences are used as video sequence repre-
sentations. For classification, a learned multiple kernel SVM
classifier (MKL) is used to combine the various histograms to
give the actions classification.

3.1. Action recognition datasets

Fig. 5. Sample frames from action recognition sequences of
Olympic Sports (top) and Hollywood2 (bottom) human action
datasets.

Hollywood2 dataset: The Hollywood2 dataset [23] has
been collected from 69 different Hollywood movies. There
are 12 action classes: answering the phone, driving car,
eating, fighting, getting out of car, hand shaking, hugging,
kissing, running, sitting down, sitting up, and standing up
(Figure 5, bottom). In total, there are 1707 action samples
divided into a training set and a test set. The performance
is evaluated by computing the average precision (AP) for
each of the action classes and reporting the mean AP over all
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classes (mAP) as suggested in [23].
Olympic Sports dataset: The Olympic sport dataset [24]
consists of athletes practicing different sports. There are
16 sports actions: high-jump, long-jump, triple-jump, pole-
vault, basketball lay-up, bowling, tennis-serve, platform,
discus, hammer, javelin, shot-put, springboard, snatch, clean-
jerk and vault (Figure 5, top). Represented by a total of 783
video sequences, divided into a training set and a test set.
Mean average precision over all classes is reported.

3.2. Results

In this section we present the experimental results using Hol-
lywood2 and Olympic Sports datasets for our motion descrip-
tor with and without Spatio-Temporal Pyramid Representa-
tion. Also we provide a comparison with the other approaches
reported in the state-of-the art.

Hollywood2 results
In Table 1, we present the average precision of Holly-

wood2 action and we compare our SIFT-ACC(STPR+MKL)
descriptor to SIFT-ACC obtained with the same method
but without STPR+MKL method. We notice that SIFT-
ACC(STPR+MKL) descriptor outperforms SIFT-ACC. Con-
sequently, we can conclude that video description based on
STPR+MKL improves the performance significantly. Qiang
and Gang. [25] propose to use a spatio-temporal cuboid
based on atomic actions, where atomic actions are basic units
of human actions. The spatio-temporal pyramid is applied
for each atomic action. This method gives 49.4%. In [26],
Gilbert et al. propose a hierarchical approach for construct-
ing and selecting discriminative compound features of 2D
Harris corners which gives a mAP equal to 50.9%. Wang
et al. [6] propose MBH+STP descriptor based on motion
boundary histograms have achieved 57.6% using the Spatio-
Temporal Pyramid. This descriptor outperforms to other
descriptors, in particular in real videos that contain a signif-
icant amount of camera motion [6]. Despite dense features,
we have obtained similar results with our motion descriptor
SIFT-ACC(STPR+MKL).
An extension to the standard BoW approach is presented in
[11] by locally applying BoW on regions that are spatially
and temporally segmented. The method gives a mAP equal
to 55.7%. In our previous work [14], based on temporal
segmentation, the Accordion representation is applied sepa-
rately on each elementary motion segment. We obtained a
mAP equal to 55.9%. In this work, our motion descriptor
achieves 57.5%. It outperforms the approaches proposed in
[25, 26, 11, 14] and gives similar results with the MBH+STP
descriptor [6].

Olympic Sports
A comparison of our descriptor with other approaches in

the state-of-the-art on the Olympic Sports dataset is shown in
table 2. We observe that SIFT-ACC(STPR+MKL) descriptor
outperforms SIFT-ACC.

Table 1. Comparison with the state-of-the-art: Hollywood2
dataset.
Action [25] [26] MBH+

STP [6]
[11] [14] SIFT-

ACC
[14]

Our

AnswerPhone - 40.20 - 26.30 29.9 28.1 31.6
DriveCar - 75 - 86.5 88.2 87.2 89.4
Eat - 51.5 - 59.2 67.1 66.8 69.4
FightPerson - 77.1 - 78.2 75.4 71.9 76
GetOutCar - 45.6 - 45.7 45.6 42.3 47.4
HandShake - 28.9 - 49.7 32.9 29.7 34
HugPerson - 49.4 - 45.4 45.8 41.8 46.5
Kiss - 56.6 - 59.7 52.9 49.2 54.5
Run - 47.5 - 72 77.2 75.5 78.8
SitDown - 62 - 62.4 60.8 57.8 62.8
SitUp - 26.8 - 27.5 35.4 33.4 37.3
StandUp - 50.7 - 58.8 59.7 56.8 61.9
mAP 49.4 50.9 57.6 55.7 55.9 53.3 57.5

Laptev et al. [4] propose to generalize spatial pyramids to
spatio-temporal domain and they suggest the HOG-HOF de-
scriptor gives a mAP equal to 62%. Carlos et al [24] propose
to use a modeling temporal structure of decomposable mo-
tion segments for activity classification. This method gives
72.1%. The atomic action approach [25] gives a mAP equal to
71.0%. The MBH+STP descriptor [6] achieves 74.9%. In our
previous work [14] we obtained a mAP equal to 72.5%. As
shown in table 2 our descriptor (mAP=75.6%) outperforms
MBH+STP descriptor [6] as well as all methods proposed in
[4, 24, 25, 14] and even in some cases by a significant margin.

Table 2. Comparison with the state-of-the-art: Olympic
sports dataset.
Action [4] [24] [25] MBH+STP

[6]
[14] SIFT-ACC

[14]
Our

mAP 62 72.1 71 74.9 72.5 70.1 75.6

4. CONCLUSION

In this work, we have presented a novel motion descriptor for
human action recognition. Our descriptor relies on spatio-
temporal pyramid representation (STPR) of the Accordion
image. The Accordion image allows the pixels having a high
temporal correlation to be put in space adjacency. The mo-
tion information is extracted by computing SIFT descriptor
around Harris3D interest points projected onto the Accordion
image. We apply the STPR on the Accordion image in or-
der to introduce the spatial and temporal layout information
into the local SIFT features computed. Experimental results
on Hollywood2 and Olympic sports datasets have shown the
efficiency of our descriptor.
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