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ABSTRACT
We present a novel framework for tensor valued Gaussian

processes (GP) regression, which exploits a covariance func-

tion defined on tensor representation of data inputs. In this

way, we bring together the powerful GP methods supported

by Bayesian inference and higher-order tensor analysis tech-

niques into one framework. This enables us to account for

the underlying structure of data within the model, providing

a powerful framework for structural data analysis, such as 3D

video sequences. To this end, we propose a new kernel func-

tion with tensor arguments under the assumption of generative

models, in the form of product kernels where a symmetrical

Kullback-Leibler divergence measure is exploited to define

the covariance function for tensorial data. A fully Bayesian

treatment is employed to estimate the hyperparameters and

infer the predictive distributions. Simulation results on both

the synthetic data and a real world application of estimating

the crowd size from 3D videos demonstrate the effectiveness

of the proposed framework.

Index Terms— Tensor, tensor kernel, Gaussian processes

1. INTRODUCTION

Gaussian processes (GP) are a class of probabilistic models

specifying a distribution over function spaces, whereby the

inference is directly performed in the function space. Due to

those desirable properties, GPs have gained much attention in

recent years; in addition the prediction based on GP models

often takes the form of a full predictive distribution [1]. This

makes them powerful tools for Bayesian nonlinear and non-

parametric regression, in which the prior distributions over

latent function can be defined implicitly by the mean and co-

variance function. The hierarchical Bayesian modeling with

GPs and inference conducted in the function space by evalu-

ating the posterior process are presented in [2]. However, the

most existing aspects of GPs can only be achieved in multi-

variate input data spaces.

Tensors (also called multiway arrays) are a generaliza-

tion of vectors and matrices to higher dimensions, and are

equipped with corresponding multilinear operators. The the-

ory and algorithms of tensor decomposition (or factorization

techniques), which can be regarded as the multilinear gener-

alization of constrained matrix factorizations, have attracted

much interest in the past decade, see e.g. [3, 4, 5], and have

been successfully applied to problems in unsupervised learn-

ing or exploratory data analysis. Multiway structures typi-

cally allow us to capture the structure of the data, usually from

a priori information about original data nature. This promises

advantages over matrix factorizations, owing to a more effec-

tive use of the underlying properties of the structured data.

In order to combine the powerful GP model and Bayesian

inference with tensor representation for structured data, in

this study, we investigate the GP regression model based on

tensor-variate inputs. In Sec. 2, we introduce a hierarchi-

cal Bayesian models for tensor-based GPs and the fundamen-

tal inference of predictive distribution. The crucial issue is

the covariance function for tensorial inputs, governing a prior

distribution over the latent function, which is defined based

on multi-mode product kernels and probabilistic generative

models in Sec. 3. Subsequently, the hyperparameter learn-

ing procedure is described in Sec. 4. The effectiveness of the

proposed model and the corresponding inference is demon-

strated by simulations on both synthetic data and a real-world

application of counting pedestrians from a crowd based on 3D

video sequences in Sec. 5. Sec. 6 concludes the study.

2. MODEL AND INFERENCE

Given a paired dataset of N observations D = {(Xn, yn)|n =
1, . . . , N}, the tensor inputs for all N cases are aggregated in

an M +1th-order design tensor X ∈ R
N×I1×···×IM , and the

targets are collected in the vector y = [y1, . . . , yN ]T . After

observing the training data D = {X ,y}, we are interested in

making inferences about the relationship between inputs and

targets, i.e., the conditional distribution of the targets given

the inputs, and in making prediction for a new input X∗ that

we have not seen in the training set. The distribution of ob-

servations can be factored over cases in the training set by

y ∼ ∏N
n=1 N (yn|fn, σ2), where fn denotes latent function

f(Xn). A Gaussian process prior can be placed over the la-

tent function, which implies that any finite subset of latent

variables has a multivariate Gaussian distribution, denoted by

f(X ) ∼ GP(m(X ), k(X ,X ′) | θ) (1)
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where m(X ) is mean function and usually is set to zero for

notational simplicity, and k(X ,X ′) is the covariance function

for tensorial data with a set of hyperparameters θ. The hy-

perparameters from observation model and GP prior are col-

lected in Θ = {σ,θ}. The model is hierarchically extended to

the third level by giving also priors over the hyperparameters

in Θ.

To incorporate the knowledge that the training data pro-

vides about the function, we use Bayes rule to infer the pos-

terior of the latent function f = [f(X1), . . . , f(XN )]T by

p(f |D,Θ) =
p(y|f , σ)p(f |X , θ)∫
p(y|f , σ)p(f |X , θ)df

, (2)

where the denominator in (2) is the marginal likelihood ob-

tained by integration over f , yielding

y|X , θ, σ2 ∼ N (y | 0,K+ σ2I), (3)

where (K)ij = k(Xi,Xj) denotes the covariance matrix

or kernel matrix. Since the Gaussian observation model

is analytically tractable case, which avoids the approxi-

mation inference, the conditional posterior of latent func-

tion f is Gaussian, and posterior of f∗ is also Gaussian

together with the observation y∗. Finally, the predictive

distribution of y∗ corresponding to X∗ can be inferred as

y∗|X∗,X ,y,Θ ∼ N (y∗, cov(y∗)), where

y∗ = k(X∗,X )(k(X ,X ) + σ2
nI)

−1y

cov(y∗) = k(X∗,X ∗)− k(X∗,X )(k(X ,X ) + σ2I)−1k(X ,X∗).
(4)

3. COVARIANCE FUNCTION WITH TENSOR INPUT

Going beyond a simple vectorial representation of the input

data to take into account structure in the input domain is a

theme which we see as very important. Although many ker-

nels have been designed for a number of structured objects,

few approaches exploit the structure of tensorial representa-

tions. Recently, M. Signoretto et. al.[6] proposed a tensorial

kernel exploiting algebraic geometry of spaces of tensors and

a similarity measure between the different subspaces spanned

by higher-order tensors. In addition, they showed that the

Hilbert space of multilinear functions associated to general

product kernels can be regarded as a space of infinite dimen-

sional tensors. There are some valid reproducing kernels to-

ward a straightforward generalization to M th-order tensors,

such as the kernel functions k : X × X → R given as

Linear kernel: k(X ,X ′) = 〈vec(X ), vec(X ′)〉,

Gaussian kernel: k(X ,X ′) = exp

(
− 1

2σ2
‖X − X ′‖2

)
.

In order to evaluate the similarity by taking advantage of

the multilinear algebraic structure of input tensors, a general

product kernel can be defined by M factor kernels, which is

valid if the factor kernels are positive semi-definite, denoted

by

k(X ,X ′) =
M∏

m=1

k
(
X(m),X

′
(m)

)
, (5)

where each factor kernel represents a similarity measure be-

tween two matrices obtained by mode-m unfolding of two

tensor examples. One possibility of similarity measure be-

tween matrices is Chordal distance (projection Frobenius

norm) on the Grassmannian manifolds. Let X denote an

M th-order tensor example, SVD can be applied on mode-m

unfoldings as X(m) = U
(m)
X Σ

(m)
X V

(m)T
X , then the Chordal

distance can be computed based on the right singular vectors

V
(m)
X . As kernels can be interpreted as measures of similarity,

it is also possible to define kernels based on information di-

vergences, such as Fisher kernel and Kullback-Leibler Kernel

[7, 8].

In this study, we applied a probabilistic kernel for ten-

sorial data based on the assumption that each observation in

the form of an M th-order tensor can be individually consid-

ered as M different generative models, corresponding to ma-

tricization of the tensor in M modes, with a set of observa-

tions. For example, we assume Xn is generated individually

by M models governed by parameters
{
λ(n)
m

}M

m=1
. Without

loss of generality, we apply Gaussian model assumption with

the parameters λ are priors mean vectors and full covariance

matrix. Once the model parameters λm has been estimated

from mode-m matricization X(m), we can define the kernel

distance based on the symmetric Kullback-Leibler (KL) diver-

gence, given by

D
(
p(x|λ)||q(x′|λ′)

)
=

∫ +∞

−∞
p(x|λ) log

(
p(x|λ)
q(x′|λ′)

)
dx

+

∫ +∞

−∞
q(x′|λ′) log

(
q(x′|λ′)
p(x|λ)

)
dx. (6)

In order to ensure the kernel matrix be a positive definite ma-

trix, we use exponential kernel function based on the symmet-

ric KL divergence measure. Finally, the product kernel from

mode-m KL kernels is represented by

k(X ,X ′) =
M∏

m=1

α2
exp

⎛
⎝−

D
(
p(X(m)|λm)||q(X′

(m)|λ′
m)

)

2β2
m

⎞
⎠ ,

(7)

where α denots the magnitude hyperparameters and β1, . . . , βM

play the role of characteristic length-scales which implements

automatic relevance determination (ARD) [9]. Since the in-

verse of the length-scale determines how relevant an input

is: if the length-scale has a very large value, the covariance

will becomes almost independent of that input, effectively

removing it from inference. θ = {α, βm|m = 1, . . . ,M}
is a vector containing all the hyperparameters of the tensor

product kernel.
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4. MAP ESTIMATION OF HYPERPARAMETERS

In the tensor-variate covariance function defined in (7), a

number of free hyperparameters whose values also need to

be inferred. In a fully Bayesian approach we should integrate

over all unobserved variables. Hence, we can approximate

the integral over p(θ, σ|D) with maximum a posterior (MAP)

estimate. The marginal likelihood and its partial derivatives

w.r.t. the hyperparameters can be obtained by

∂

∂θj
log p(y|X ,θ, σ) =

1

2
yTK−1

y

∂Ky

∂θj
K−1

y y − 1

2
tr

(
K−1

y

∂Ky

∂θj

)
, (8)

where Ky = K + σ2I denotes the covariance matrix for the

noisy targets y. The inference on the parameters of covari-

ance functions is conducted mainly transformed space, e.g.

log-transformation, which has the advantage that the parame-

ter space is transformed into (−∞,+∞).

5. RESULTS

5.1. Simulation on synthetic data
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Fig. 1. Estimation of nonlinear function using tensor-based

GPs. The surface denotes the actual nonlinear function and

balck points denote the predictions of the test set. (a), (b) il-

lustrate the predictions and MSE performance on two datasets

generated using different σ2 .

To demonstrate the effectiveness of tensor-variate based

GPs for regression, a set of N random data having 27-

dimensions were generated according to xn ∼ N (0, I),
in order to visualize the results easily, the dependent data

was generated using only the first two variate of x by a non-

linear functions yn = | tanh(xn1) + cos(xn2)| + εn, where

ε ∼ N (0, σ2). The dataset is divided into training and test set.

We assume the data xn is naturally represented by a higher-

order tensor with meaningful modes, thus we reorganized xn

to Xn ∈ R
N×3×3×3. The simulation results are illustrated in

Fig. 1. Observe that tensor-based GP enables us to predict

the nonlinear function accurately without overfitting even

though there are many variables in X that are irrelevant to

the dependent data. The MAP estimation of hyperparamters

are shown in Table 1. For comparison, we also performed the

GPs directly using vectorized data xn ∈ RN×27. The results

are that MSE = 0.013 when σ2 = 0.01 and MSE = 0.087
when σ2 = 0.1. Since the nonlinear function is only related

with two variables and the data structure is noninformative

for prediction, only slightly improvements using tensor-based

GP model are observed. However, it clearly demonstrates

the effectiveness of the tensor-based GP model for regression

and effectiveness of KL-based kernels for tensorial data. In

addition, the number of hyperparameters θ (i.e., 3) in tensor-

based GP is quite smaller than using vectorized GP with

29 hyperparameters, which provides us more robustness to

overfitting problem due to the smaller number of parameters.

Table 1. Estimation of hyperparameters

Data sets θMAP σ2
MAP

σ2 = 0.01 (0.49, 1.25, 1.11, 1.42) 0.009

σ2 = 0.1 (0.55, 1.07, 1.06, 1.30) 0.01

5.2. Crowd counting from video sequences

There is a great interest in computer vision technology for

counting people from video recordings of real environ-

ment [10, 11, 12, 13]. In [14], a privacy-preserving sys-

tem was presented for estimating the count of pedestrians

in different directions without using explicit object tracking.

However the crowd regions was segmented using a mixture

of dynamic textures and various features were extracted from

each crowd segment together with a perspective map created

manually, resulting in that the successful crowd counting de-

pends on effective crowd segmentation. In this study, higher-

order tensor was exploited as structural data representation

for each video sequence, and the tensor-variate based GPs can

be applied for counting people from videos without explicit

segmentation and feature extraction procedure. The pedes-

trian traffic database was collected from a stationary digital

camcorder at University of California, San Diego1. Some

examples of video are shown in Fig. 2. The original video

size is 238 × 158 with 10 fps, the total 2000 frames were se-

lected for ground-truth annotation and pedestrian count over

the region-of-interest (ROI) were marked in every 5 frames of

the video. The same setting as [14] was used, i.e. 800 frames

for training the model with the remaining 1200 frames for

testing, except that each observation is represented by a video

sequence containing 5 frames denoted by a tensor Xn, which

is consistent with the annotation rate. Fig. 3 illustrates a

tensor representation of every 5 frames video sequence and

1The detailed description of database can found from

http://www.svcl.ucsd.edu/projects/peoplecnt/
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mode-m unfolding operation. The mode-m matrices repre-

sent M generative models for each observation and is applied

for computing the KL divergence based covariance function.

Fig. 2. Examples of scene. Left top image shows the 100th

frame with largest crowd bounding box while segmentation

of crowd area is shown in left bottom image. Right top image

shows a frame with ROI mask, and the normalized comple-

ment image is shown in the right bottom.

Fig. 3. Each video sequence is represented by a third-order

tensor as shown in the left image. The mode-m matriciza-

tion (unfolding operation) shown in the right are considered

as three generative distributions with many corresponding ob-

servations, which is used to define the KL divergence based

covariance function.

For comparison, we trained the system on two prepro-

cessed datasets: one is the ROI masked videos and the other

is further normalized videos by approximately removing the

background estimated by mean value along frame mode and

complementing the frames as shown in Fig. 2. The prediction

performance and MAP estimation of hyperparameters θ from

covariance function and σ2 from observation model are com-

pared in Table. 2. The results demonstrated the tensor-based

GPs successfully predict the crowd counting of pedestrian

Table 2. Crowd counting results using two simplely prepro-

cessed datasets. Mean absolute error and MAP estimation of

hyperparameters are shown for comparisons.

|error| θMAP σ2
MAP

ROI masked 3.14 (161.4, 12.5, 27.4, 5.5) 0.04

Normalized 3.39 (103.6, 14.8, 29.2, 7.2) 0.03
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Fig. 4. Crowd counting results over the test sets. The blue line

denotes the prediction and green line denotes the ground-truth

while gray area shows uncertainty of the predictions.

with averaged absolute error of 3 persons without explicit

crowd segmentation and feature extraction. The small differ-

ence between two preprocess indicates that tensor-based KL

divergence captures the discriminative information automati-

cally thus avoiding the step of removing background. Fig. 4

shows the crowd count estimations for every frame together

with uncertainty of predictions. The inappropriate estimation

between frames 200-400 is caused by two bicyclists traveling

quickly through the scene. Although the performance is just

comparable with the state-of-the-art, to our knowledge, this is

the first time to perform crowd counting using the raw video

data without crowd segmentation and feature extraction.

6. CONCLUSION

We proposed a probabilistic regression framework that brings

together the advantages of the GP model and tensor analy-

sis techniques, such that tensor-variate GP regression with

Bayesian inference can be performed directly on structured

data represented by higher-order tensors. This framework has

been shown to allow for a simultaneous account of the multi-

linear structures and nonlinearity of original data. The advan-

tages of the proposed approach have been demonstrated on a

practical example of crowd counting from videos, without the

need for explicit segmentation and feature extraction.
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