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ABSTRACT

This paper presents an approach to identifying nearly repet-
itive contents in a stream of video where prior information
such as the number, the length and contents of repetitions are
not known. The approach is novel in that it does not require a
template for searching or learning repeated contents. Instead
it analyses a video by characterising the spatial and tempo-
ral information embedded in a frame sequence. A video is
represented with its spatio-temporal features, which are anal-
ysed in the embedded manifold to reconstruct the underlying
structure so that repeated contents can be reorganised. The
approach is evaluated using rushes videos, where numerous
repetitions are found. The experiments show that overall per-
formance is improved using the extension of manifold learn-
ing with the spatio-temporal representation.

Index Terms— spatio-temporal representation, manifold,
synchronisation, inter-similarity, rushes video.

1. INTRODUCTION

Repetitive contents in multimedia are frequently found in a
combination of textual, visual and audio (speech) informa-
tion. A quick search for any multimedia materials using
conventional search engines often results in multiple items
with similar, or even identical, contents in the highest rank.
In news broadcasts, for example, we frequently see nearly-
repeated video footage although the presentation may vary
with, e.g., camera settings and appearance of objects, reflect-
ing their production processes and policies. Repetitive con-
tents are not copies, but there exist some differences, thus
making their management a difficult problem.

Rushes video is one example of nearly-repetitive se-
quences, whereby the original material is transformed into
nearly, but not exactly, identical contents. It contains repet-
itive contents from multiple retakes of the same scene, caused
by, e.g., actors’ mistakes or technical failures [1]. Nearly-
repetitive contents in the rushes video may not be identical,
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sometimes causing inconsistency between retakes [2]. Occa-
sionally some parts of the original sequence are dropped or
extra information may be added at various places, resulting in
retakes of the same scene with unequal lengths.

In this paper we present an approach to align nearly-
repetitive contents in rushes video. The majority of the pre-
vious works employed techniques such as template matching,
temporal windowing, segmentations, camera calibration anal-
ysis or object tracking. Instead, we define a spatio-temporal
inter-similarity between repeated video contents by extend-
ing the spatial Isomap to spatio-temporal graph-based man-
ifold embedding (or STG-Isomap) that captures the similar-
ities between repetitive sequences. Firstly spatio-temporal
features are defined for a high-level semantic representation
of complex scenes in a video sequence. Interest points that
have significant local variations in both space and time are ex-
tracted and encoded using fewer codebook basis in the high-
dimensional feature space. We used the spatio-temporal ex-
tension of locality-constrained linear coding (ST-LLC) that is
able to detect features using spatio-temporal scale-invariant
feature transform (ST-SIFT) [3]. At each time instance (a
video frame, practically) visual features, defined by the ST-
LLC codes, are modelled to form a temporal coherence to
adjacent frames. Secondly, the similarity is measured by
constructing a shortest-path graph with k-nearest neighbour
(kNN) in both the spatial and the temporal domains. We
introduce an extension of Isomap aiming to identify the un-
derlying structure in repetitive video sequences, semantically
modelled by ST-LLC codes. The structure of heterogeneous
data is reconstructed, presenting clusters of repetitive scenes.

2. RELATED WORK

Manifold learning is a class of non-linear dimensionality re-
duction technique that transfers data from a high-dimensional
space to a suitable output space with reduced dimensional-
ity [4]. Non-linear manifold learning does not assume the
linearity of the input space, thus providing a better chance
of dealing with input data with complex embedding in the
high-dimensional space. The space with reduced dimensions
should reflect the intrinsic dimensionality of the data, that is,
the least number of parameters that capture the data features.
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Fig. 1. Processing steps for nearly-repetitive contents alignment.

There are many manifold learning algorithms adopted in the
video processing field, among which isometric feature map-
ping (Isomap) is one of the widely used techniques. It is a
graph-based scheme that compounds the highlighted features
of the principal component analysis (PCA) and multidimen-
sional scaling (MDS) [5]. It overcomes dimensionality reduc-
tion problems by considering the geodesic distance, which de-
fines the shortest path or curve that connects two points in a
connected set.

Various problems, such as sequences alignment, have
been addressed using manifold techniques. Because they
involve time series data, one potential direction would be
to exploit the temporal information in learning the reduced-
dimensionality space. As far as we are aware, in the man-
ifold learning literature, only Jenkins and Mataric̀ [6] took
temporal coherency explicitly into account. Their algorithm
extended the spatial Isomap [5] by assigning similar low-
dimensional weights to temporally adjacent samples extracted
using a windowing technique. They grouped these samples
so that temporally adjacent groups would have similar low-
dimensional coordinates. They did not model dynamics and
their performance depends on the window size, where smaller
windows produced better results.

3. ALIGNMENT OF REPETITIVE CONTENTS

Our work defines the relation between nearly-repetitive con-
tents in a video stream (i.e., multiple retakes of the same
scene) in the low-dimensional space. The approach consists
of two stages. First, content of the video stream is described in
the high-dimensional space using the invariant interest points
and coding schemes (Section 3.2). To define spatio-temporal
codes that represent video frames we apply ST-LLC which
considers the locality of the manifold structure in the input
space [3]. Second, a manifold is computed in order to map
the high-dimensional representation to the embedded space
(Section 3.3). At this stage the inter-similarity is computed
between the multiple retakes using the spatio-temporal kNN
graph. We extended the spatial Isomap [5] to the spatio-
temporal domain to generate the intrinsic coordinates for each
manifold. Generated coordinates are chronologically ordered

by the spatio-temporal similarity and integrated to a graph for
sequences alignment. The entire process of the approach is
illustrated in Figure 1.

3.1. Notation

We use the following notations in the remaining sections of
this paper. Let X = {x1, . . . , xN} ∈ RD×N denote a
video sequence containing repetitive contents with N frames
and D dimensions, and xi represents a frame in X . F =
{fx1, . . . , fxN} ∈ RQ×N is the ST-SIFT features with N
entries and Q dimensions, where fxi = {f1, . . . , fM} ∈
RQ×M represents a set of M interest points for frame xi. Let
S = {sx1, . . . , sxN} ∈ RU×N be the spatio-temporal codes
that represent the video frames with N codes and U dimen-
sions, and sxi = {s1, . . . , sM} ∈ RR×M represents a set of
M codes for the frame xi.

3.2. Video Representation

The first step is to apply the ST-SIFT algorithm that identifies
spatially and temporally invariant interest points in a given
video stream. These points contain the amount of informa-
tion sufficient to represent the video contents. To achieve the
invariance in both space and time, spatio-temporal Gaussian
and difference of Gaussian (DoG) pyramids are calculated.
The set of points F shared between three spatial and tempo-
ral planes (xy, xt and yt) at each scale in the DoG are chosen
as interest points. The second step is to derive the spatio-
temporal codes S for the video stream X given the ST-SIFT
feature matrix F . For each frame xi, the algorithm works by
firstly constructing a spatio-temporal graph between its de-
scriptor set fxi and a codebook B, computing the shortest
path, performing a kNN search, and finally solving the fol-
lowing constrained least-square fitting problem:

min
sxi

M∑
j=1

‖fj −Bsj‖2 + λ‖dj � sj‖2 st. 1>sj = 1, ∀j

where � is the element-wise multiplication, λ is a sparsity
regularisation term and dj is the locality parameter that rep-
resents every basis vector with different freedom based on
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its shortest path to the spatio-temporal descriptor. ‘1>sj =
1, ∀j’ is the shift-invariant requirements for the LLC code.
The final step uses the multi-scale max pooling [7], where the
set of codes computed for each frame are grouped together to
create the corresponding pooled representation S.

3.3. Manifold Learning

Given a spatio-temporal coding matrix S for a video sequence
X , the synchronisation map is estimated between the multi-
ple video retakes. First the similarity matrix δ is calculated
between the LLC codes using the Euclidean distance. The
value of δij defines the distance between the LLC codes sxi
and sxj for two frames xi and xj (i, j = 1, . . . , N ). Then,
for each frame instance xi represented by a code sxi:

1. L frames whose distance is the closest to xi are con-
nected. They are referred to as spatial neighbours (sn):

snxi =

{
sxj1, . . . , sxjL | argmin

j

L(δij)

}
(1)

where argmin
j

L implies node indexes j with L smallest

distances.

2. Another L frames, chronologically ordered around xi,
are set as temporal neighbours (tn):

tnxi
=
{
sxi−L

2
, . . . , sxi−1, sxi+1, . . . , sxi+L

2

}
(2)

3. To optimise the set of temporal neighbours, tnsn is se-
lected from temporal neighbours of spatial neighbours:

tnsnxi
=
{
tnsj1 , . . . , tnsjK

}
∩ tnsi (3)

4. Spatial and temporal neighbours are integrated, produc-
ing spatio-temporal neighbours (stn) for frame xi:

stnxi
= snxi

∪ tnsnxi
(4)

The above formulation of stnxi effectively selects
xi’s temporal neighbours that are similar, with a good
chance, to its spatial neighbours. This means that, sup-
pose xi is an isolated frame and totally different from
the temporal neighbours, only the spatial neighbours
will be taken into consideration.

The inter-similarity matrix is constructed by recalculating the
shortest path between the nodes in graph δ, forming a new
embedded correlation δγ . The manifold embedding is then
modelled as a transformation T of the high-dimensional data
in terms of similarity δγ into a new embedded configuration
E in the low-dimensional space:

T : δγ → E (5)

The function T is the eigen decomposition of the inter-
similarity matrix that minimises the following loss function:

Lprojection = ‖X − T (X)‖ = ‖X − T (δγ)‖

= ‖X − (Q ∧QT )‖ = ‖X − (Q+∧
1
2
+)‖ (6)

whereQ and ∧ are the eigenvectors and the eigenvalues of δγ ,

∧
1
2
+ contains the e largest eigenvalues in ∧ along the diagonal

and Q+ is the square root of e columns in Q. The new co-
ordinates for each frame instance in the embedded space are
selected from the e largest eigenvalues of matrix Q+∧

1
2
+.

4. EXPERIMENTS

The approach was evaluated using MPEG-1 videos from
the NIST TRECVID 2008 BBC rushes video summarisation
task [1]. Three video sequences identified as MS206370,
MRS150072 and MRS044499 were selected for evaluation,
with the approximate length of two minutes, the frame rate of
25 fps (frames per second) and the frame size of 288 × 352
pixels. Video representation was created as follows: Firstly
we used spatio-temporal SIFT combined with LLC [3] as
a local features detector. Using publicly available code by
Scovanner et al. [8], spatio-temporal regions around the in-
terest points were detected and described by the 3D-HOG
(histogram of Gaussian). For each interest point the descrip-
tor length was 640-dimensional and was determined by the
number of bins to represent the orientation angles in the sub-
histograms. To create a pooled representation in the SPM
(spatial pyramid matching) step, the ST-LLC was computed
for each spatio-temporal sub-region and pooled together us-
ing multi-scale max pooling. We used 4× 4, 2× 2 and 1× 1
sub-regions. The pooled features were then concatenated and
normalised using the `2-norm. For dictionary generation, de-
scriptors for interest points were clustered to a pre-specified
number of visual words. The similarity matrix was computed
using the Euclidean distance and the spatio-temporal kNN
graph was constructing with k = 20. Lastly the classical
MDS was applied for dimensionality reduction.

4.1. Evaluation Schema

Each scene in the rushes videos is a sequence of actions de-
fined by actors’ dialogue. A scene was used as a unit for eval-
uation. The purpose of the experiment was to align and group
the multiple and similar retakes of the same scene. A descrip-
tion of actions for each scene was provided by NIST [1]. The
groundtruth was created using three human judges. To mea-
sure the performance of retakes similarity, the average preci-
sion and recall were calculated and compared with three other
approaches including MDS, the conventional Isomap and the
ST-Isomap [6]. Individual performances were evaluated using
a kNN graph with the varying value of k.
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Fig. 2. Synchronisation binary map to illustrate the relation
between two repetitive sequences in MRS044499.

4.2. Results and Analysis

This experiment aimed at reconstructing video sequences to
uncover their repetitive contents. Four manifold learning
techniques were applied on the spatio-temporal representa-
tion. It was hoped that retakes from the same scene would
be mapped close to each other in the manifold, resulting in
clusters of repetitive contents. Pairs of closest frames from
the different retakes would form an alignment. Figure 2 illus-
trates the synchronisation map computed between two nearly-
repetitive sequences in rushes video MRS044499. The figure
shows that the STG-Isomap was able to build cleaner clusters
of repetitive contents, with which most frames from the same
scene were re-positioned and closely placed in the embed-
ded space. It developed the spatio-temporal relation during
neighbourhood graph construction. As a comparison, only
the temporal relation was identified by the ST-Isomap while
the spatial relation was identified by the Isomap and the MDS.

For detection of similar and repetitive scenes, precision
and recall scores are presented in Figure 3. The figure in-
dicates that the spatio-temporal approach outperformed other
methods with all three videos. The inter-similarity was con-
sidered as a multi-region frame-by-frame comparison, calcu-
lating the similarity of composition between two frames using
the spatio-temporal codes. This is because, in a sense, in-
dividual objects’ characteristics were coherently transitioned
from one frame to another. The difference was not very
large between the MDS and Isomap for embedding repetitive
manifolds, indicating that these methods could not capture
spatio-temporal features very well. As an additional note, the
STG-Isomap chose the value for L before the graph was con-
structed. For the Isomap and ST-Isomap, on the other hand,
L was selected during the graph construction, and they could
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Fig. 3. Average precision and recall for three rushes videos.
The STG-Isomap approach is compared with the MDS, the
conventional Isomap and the ST-Isomap.

change the value when calculating the shortest paths. The lin-
ear embedding technique, MDS, did not have a step for graph
construction, but the fixed neighbourhood size was applied. It
was not able to learn the repetitive multi-class sequences very
well.

One may notice that Figure 3(c) for video MRS150072
presented the best results. It was caused by variations in
scene setting such as appearance of dominant colour patterns
and moves of video shooting location in the scene. Large
variations contributed particularly well for identification of
repetitive contents. On the other hand, Figure 3(b) for video
MRS044499 resulted in lower performance across various
approaches. It was an indoor scene with little moves by actors
and, despite the use of different camera angles in the retakes,
there were no dramatic changes with colour combination of
the foreground (i.e., actors themselves) and background.

5. CONCLUSIONS

This paper presented an approach to aligning nearly-repetitive
contents in a video stream using manifold embedding. It
utilised ST-LLC to densely extract and encode salient fea-
ture points from a 3D signal, capturing the intra-similarity
within the video sequence. A spatio-temporal graph was de-
rived as a step for manifold learning that defined the inter-
similarity across two sequences. Experimental results using
rushes video showed that the presented approach performed
better than the conventional manifold embedding techniques.
The contribution of this study may be extended to other tem-
poral applications such as video content similarity and video
information retrieval.
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