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ABSTRACT
In magnetic resonance (MR) clinical practice, noise esti-
mation is usually performed on Rayleigh-distributed back-
ground (no signal area) of magnitude images. Although noise
variance in quadrature MR images is considered spatially
independent, parallel MRI (pMRI) techniques as SENSE
or GRAPPA generate spatially varying noise (SVN) distri-
bution. In this scenario noise estimation from background
may produce biased results. To address these limitations we
introduce a novel noise estimation scheme based on local
statistics. Our method turns out to be more accurate than the
other pMRI noise estimation schemes previously described
in the literature. Denoising performances, measured by vi-
sual inspection and peak signal-to-noise ratio (PSNR), of
Non-Local Means denoising filters (NLM) are considerably
improved using SVN-NLM in case of inhomogeneous noise.
Furthermore, SVN-NLM behaves as well as standard NLM
when homogeneous noise was added, thus proving to be a
robust and powerful denoising algorithm for arbitrary MRI
datasets.

Index Terms— Noise estimation, denoising, parallel
MRI, non-local means, Rician noise

1. INTRODUCTION

Noise estimation and, consequently, denoising are crucial
steps in most post-processing tasks of MRI and, particu-
larly, of MR image quantitation. In standard quadrature MRI
(hereafter, sMRI), both real and imaginary images show an
uncorrelated Gaussian noise whose variance is uniform all
over the field of view (FOV). Once the magnitude of the com-
plex images is extracted, the resulting noise follows a Rician
distribution, whose variance can be accurately estimated from
the variance of the voxel values (Rayleigh-distributed) in the
image background (i.e. the no-signal area) [1, 2].

However, as soon as images show a spatially varying
noise distribution, such background-based noise estimation
schemes produce biased results [3, 4].
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Parallel MRI is an emerged technique that increases the
image acquisition rate by sampling a reduced amount of k-
space data with an array of receiving coils [5, 6]. Generalized
auto-calibrating partially parallel acquisition (GRAPPA) and
sensitivity-encoded (SENSE) MRI are most common image
reconstruction schemes in pMRI. Both reconstruction algo-
rithms share the incorporation of coil-sensitivity profiles into
the image reconstruction process [7]. In GRAPPA algorithm
missing k-space lines are computed before full-image is re-
constructed for each receiver channel [8]. On the other hand,
SENSE algorithm reconstructs complex image for each re-
ceiver channel and then final images are pixel-wise multiplied
by appropriate coil sensitivity mask [9]. The application of
multi-surface coil arrays and reconstruction filter can influ-
ence the statistical distribution of image noise [10]. In this
scenario, variance of background regions will lead to innacu-
rate estimations of the true local noise if a uniform Rayleigh
distribution is erroneously assumed [4].

In the context of denoising algorithms, one of the most
performing and robust denoising approaches is the non-local
means (NLM) filter, introduced in [11]. NLM filter assumes
that the restoring function for a given point is a mean of all
the image values, largely weighted according to the radio-
metric similarity between voxels and only weakly tied to a
spatial proximity criterion. In particular, it has been shown
that NLM filter guarantees the homogeneity of flat zones, pre-
serves edges and fine structures, and transforms white noise
into white noise, thus avoiding the introduction of artifacts
and spurious correlated signal [11, 12]. Although there are
some algorithm variants that take into account spatially vary-
ing noise distribution in image to be filtered [13, 14, 15], at the
best of our knowledge, a robust and accurate noise estimation
in a NLM pipeline has been poorly investigated.

In this paper we present a novel noise estimation based
on NLM filter and local statistics. Our local mask does not
need an a priori knowledge of sensitivity maps, subsampling
factor and geometry factor. Therefore, our noise estimation
technique is successfully applicable to MR images with both
spatially varying and uniform noise distribution.

The plan of the paper is as follows. In §2 we briefly review
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the noise properties of standard (§2.1) and parallel (§2.2) MR
images. To follow, in §3 we present the details of NLM de-
noising scheme (§3.1) we used to extract the local noise mask
(§3.2) and to produce the actual restored images. Finally, in
§4 and §5 we present and discuss the results, comparing the
accuracy of our algorithm with the ones already described in
literature.

2. THEORY

2.1. Spatially independent noise in sMRI

The full k-space acquired in sMRI is assumed to be corrupted
with Gaussian white noise. After Fourier transform, real and
imaginary images are still corrupted by uncorrelated Gaussian
noise with same variance in both complex components. The
non-linear transformation leading to magnitude images mod-
ifies the noise distribution, which shows a Rician probability
density function (PDF):

pM (M |A, σ) =
M

σ2
e
−M

2+A2

2σ2 Io
AM

σ2
ε(M), (1)

where σ2 is the noise variance in real and imaginary images;
A is the noise-free image; M is the actual magnitude image;
Io is the 0th order modified Bessel function of first kind and
ε is the Heaviside function. In case of high SNR, the Rician
distribution tends to the Gaussian one, while, in the opposite
limit (A = 0), it becomes the Rayleigh distribution:

pM (M |σ) =
M

σ2
e
−M

2

σ2 . (2)

To avoid wrap-around artifacts, MR images are usually
acquired with pretty large background area, so that the noise
amplitude can be easily evaluated on no-signal image seg-
ment. Given the standard deviation σ̂ of the image back-
ground, σ of Eqs. 1 and 2 is computed according to [1]:

σ2 = (2− π

2
)σ̂2. (3)

2.2. Noise from parallel MR images

In pMRI raw data represent the subsampled k-spaces acquired
from a multiple-coil system.

In case of GRAPPA technique, [16] shows that in a good
approximation the magnitude image PDF is a non-central χ
distribution, as if noise were distributed identically and inde-
pendently in each coil:

pML(ML|AL, σn, L) =
A1−L
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σ2
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(4)
where L is the number of coils, ML and AL are respectively
magnitude image and noise-free image reconstructed with
sum-of-squares method and IL is Lth order Bessel function
of first kind.

On the other hand, SENSE reconstructs sub-sampled ac-
quisitions in the spatial domain, noise distribution follows a
non-stationary Rician PDF [17] whose variance is:

σ2
s = rσ2|Wi|2, (5)

where σ2 is noise variance without subsampling, r is the re-
duction factor and Wi is the reconstruction matrix depending
on sensitivity map for each coil.

3. MATERIALS AND METHODS

3.1. Non-local means denoising filter

An N -D image X can be considered as a real function X :
RN → R with a bounded support Ω ⊂ RN . The NLM filter
[11] is a class of endomorphisms of the image space, identi-
fied by 2 parameters (a and h), that acts as follows:

[NLMa,h(X)](~x) = Y (~x) =

∫
Ω

exp
[
− d2a(~x,~y)

h2

]
X(~y)d~y∫

Ω
exp

[
− d2a(~x,~y)

h2

]
d~y

, (6)

where

d2
a(~x, ~y) ≡

∫
RN

∣∣X(~x+ ~t)−X(~y + ~t)
∣∣2 · exp−‖

~t‖2
2a2

(2π)n/2 · a
d~t . (7)

Therefore, given a search radius M , for each voxel i lo-
cated at ~xi we define a search box Vi as

Vi ≡
{
~xj ∈ Ω

∣∣‖~xj − ~xi‖∞ < M
}
. (8)

Analogously, given a similarity radius d ∼ a, for each
voxel ~xj within a given search box Vi, we can define a simi-
larity box

jBi ≡
{
~xk ∈ Ω

∣∣‖~xk − ~xj‖∞ < d
}
. (9)

If the image is defined on a discrete grid, a suitable filter
implementation is:

Yi =

∑
~xj∈Vi exp

[
−‖j

Bi−iBi‖22
h2

]
Xj∑

~xj∈Vi exp

[
−‖j

Bi−iBi‖22
h2

] , (10)

The filter strength, which is determined by h, can be au-
tomatically tuned to obtain an optimized denoising, indepen-
dently from the search radius M and the standard deviation
of noise σ:

h2 = 2βσ2 |Vi| (11)

(β ∼ 1 is an adimensional constant to be manually tuned).
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Fig. 1. Spatially varying noise estimation steps in our method.
Difference image (c) between noisy image (a) and NLM fil-
tered image (b) was used to estimate local variances (d).
Definitive noise mask (e) was obtained by applying a median
filter to remove patch-related effects and residual signal struc-
tures (see the red arrows) from (d).

3.2. Estimation of local variances

To handle potential inhomogeneities of noise power within
the general context of MRI, we considered a local approach
to estimate a mask of noise amplitude of input noisy image.

First, we extracted an only-noise image (Fig. 1(c)) as dif-
ference between input image (Fig. 1(a)) and the image de-
noised with a standard NLM algorithm (Fig. 1(b)): we set
a pretty high filter streght (β = 1.5) in order to extract the
noise as much as possible, still preserving the edges of the
image structures from an excessive blurring. Then, we cal-
culated a patch-based second order central moment of the
only-noise image (Fig. 1(d)). To avoid patch-related effects
and to wash out the spurious hyper-intensities (red arrows)
in Fig. 1(d) around the image edges due to the unavoidable
structure blurring introduced by NLM filter, we applied a me-
dian filter (which is particularly effective in removing low-
cardinality structures – pointed out by the red arrows in the
figure) to obtain the final mask of local variances (Fig. 1(e)).

3.3. SVN estimation adapted to magnitude images

According to Eqs. 1–5, local noise mask would be underesti-
mated by the local variance of magnitude image values in low
SNR regions. To avoid biased results, we used fixed point
formula proposed in [18]. Based on the first two moments of

Rician distribution, we evaluated the correction factor ξ as:

ξ(θi) = 2 + θ2
i −

π

8
× exp

(
θ2
i

2

)
×
((

2 + θ2
i

)
I0

(
θ2
i

4

)
+ θ2

i I1

(
θ2
i

4

))2

,

(12)

where θi represents the local SNR and In is the nth order
Bessel function of first kind. Then, local noise variance σ2

i
was computed as:

σ2
i =

σ̂i
2

ξ(θi)
, (13)

where σ̂2
i represents biased local variance.

(a) (b)

(c) (d)

Fig. 2. Denoising results on corrupted image (average 10%
non-uniform noise) with standard NLM (a) and NLM with
SVN mask (b). PSNRs are 33.4162 and 34.7183 for NLM and
SNV-NLM, respectively. Absolute values of residual images
(enhanced by a factor 10) are shown in (c) and (d); the red
ellipses highlight the image structures lost by standard NLM.

4. RESULTS

In order to evaluate the performances of NLM filter with our
SVN mask (hereafter SVN-NLM), we corrupted noise-free
MR images with both Gaussian and Rician spatially varying
noise and integrated the estimated noise mask in Eq. 11 to
adapt voxel-by-voxel the filter strength as function of the lo-
cal noise power. Due to high computational complexity of
NLM algorithm, we used a multi-GPU implementation [19]
in both pre-processing (standard NLM) and denoising (SVN-
NLM) steps. Visual inspection and residuals between noisy

1241



and denoised image have been used to rate the quality of de-
noising. As quality measure we evaluated Peak SNR (PSNR):

PSNR(f̂(x), f(x)) = 10 log10

M2

1
|Ω|
∑

x∈Ω(f(x)− f̂(x))2
, (14)

where M is maximum value of noise-free image (f(x)) and
f̂(x) is the denoised image.

SVN-NLM-denoised and residual images (Fig. 2(b)-(d))
show high performance denoising without sensible removal
of image structures. Compared with standard NLM, our
method produces better results in terms of both visual inspec-
tion and PSNR, with a gain of ∼ 1.3 dB (Fig. 2).

Moreover, to confirm the stability of our noise estimation
scheme, we corrupted the ground truth with uniform noise.
As shown in Fig. 3, SVN-NLM produces similar results in
comparison with standard NLM.

(a) (b)

(c) (d)

Fig. 3. Denoising results on corrupted image (10% uniform
noise) with standard NLM (a) and NLM with SVN mask (b).
31.1033 and 31.1071 are PSNRs for NLM and SNV-NLM,
respectively. Absolute values of residual images (enhanced
by a factor 10) are shown in (c) and (d).

Finally, we compared our method with an implementation
of the state-of-the-art NLM algorithm for pMRI, proposed by
[13]. The different strategies to estimate the only-noise image
and to statistically handle the patch-related effects of the noise
variance strongly influence denoising results in case of non-
uniform noise distribution. In this context, our method outper-
forms previous noise estimation and, accordingly, denoising
in terms of both structure preservation and PSNR, with a gain
of ∼ 0.8 dB (see Fig. 4).

(a)

(b) (c)

Fig. 4. Denoising results on ”ground truth” (a) corrupted
with an average 10% non-uniform noise. PSNRs of NLM
proposed in [13] (b) and our SVN-NLM (c) are 33.9606 and
34.7305, respectively. Red arrows highlight most relevant dif-
ferences between images.

5. DISCUSSION

In this study, a new method for MRI noise estimation has been
presented to address the problem of biased estimation in case
of spatially dependent noise distribution when background-
based variance extraction is performed. Visual inspection
clearly proves better results compared to standard NLM filter
where anatomical structures are visible in image residuals.
Moreover, both quality measure and PSNR demonstrate the
ability of SVN-NLM to remove noise adaptively according to
local noise variance. As our SVN estimation does not need
an a priori knowledge of sensitivity maps and subsampling
factor, the derived noise mask is applicable on parallel MR
images reconstructed with both SENSE and GRAPPA tech-
niques. Moreover, our SVN estimation outperforms previous
noise calculation in case of non-uniform noise distribution
[13, 14, 15]. In particular, compared to denoising method
proposed in [13], we obtain both better PSNR results and
gain in contrast-to-noise ratio (CNR).

On the other hand, as our approach has been demonstrated
to produce similar results as the standard NLM in case of uni-
form noise distribution, SVN-NLM is robust enough to be ap-
plicable also on general MRI datasets (both sMRI and pMRI).

In conclusion, the application of our method in post-
processing tasks of both standard and parallel MRI can clearly
benefit not only visual inspection, but also quantitative tech-
niques that rely on good quality of the data.
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