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ABSTRACT

This paper proposes a Poisson denoising with a union of di-
rectional lapped orthogonal transforms (DirLOTs). DirLOTs
are 2-D non-separable lapped orthogonal transforms with di-
rectional characteristics. Its bases overcome a disadvantage
of the separable wavelet image denoising for the diagonal tex-
tures and edges. Based on this feature, multiple DirLOTs are
used to improve the performance by introducing redundant
representation with multiple directions. Experimental results
show the combination of the variance stabilizing transforma-
tion (VST), Stein’s unbiased risk estimator-linear expansion
of thresholds (SURE-LET) approach and multiple DirLOTs
is able to significantly improve the denoising performance,
and verify the feasibility of the proposed method.

Index Terms— Multiple DirLOTs, Wavelet shrinkage,
Anscombe transform, SURE-LET

1. INTRODUCTION

Image denoising is one of basic problems of image process-
ing, the purpose is to make the quality of the noise image bet-
ter. Measurement noise are possible to jointly appear in an im-
age obtained by digital image acquisition whose predominant
sources are the stochastic nature of the photon-counting pro-
cess at the detectors and the intrinsic thermal and electronic
fluctuations of the acquisition devices. Under many condi-
tions such as low-power light source, short exposure time,
and phototoxicity appeared in the photon acquisition systems
(e.g., fluorescence microscopy, astronomy and medical de-
vices), only a few photons are collected by the photosensors,
appearing the noise that approximately obeys Poisson distri-
bution. This noise is strongly signal-dependent, which leads
to the difficulties in denoising process. During the image de-
noising, the image noise corrupted mentioned above can be
modeled as Poisson noise.

The denoising problem for Poisson noise can be modeled
by a modular fashion through variance stabilization. The de-
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noising process can be described as follows: First, to mod-
ify the noisy data by applying a nonlinear variance stabiliz-
ing transformation (VST); Second, to treat the modified noisy
data with algorithms designed for the removing of Gaussian
noise; Third, to obtain the desired estimation of the unknown
noise-free image by applying an inverse VST to the denoised
data.

In the first step, since the image is corrupted by the signal-
dependent noise whose variance varies with the expectation of
the pixel value, the VST should be applied so that the trans-
formed data of Poisson noise can be approximately modeled
by the Gaussian noise distribution with a know constant vari-
ance [1], [2]. The denoising problem for Gaussian noise be-
comes possible to apply to Poisson denoising algorithms.

Among Gaussian denoising methods, the SURE-LET
is relatively efficient[3]. However, its performance becomes
worse for the regions where the interscale correlation is weak,
which can generally be overcome by separable transforms
(e.g., Haar and Symlets). Nevertheless, the representation
of edges, diagonal textures, and gradual changing are in-
adequate with these separable transforms. To address this
problem, the non-separable orthonormal transform was pro-
posed to be applied to the SURE-LET image denoising so
that its performance for diagonal textures and edges can be
improved [4]. However, this approach is only applicable to
a fixed single geometric direction. In order to overcome the
problem, a redundant transform with multiple DirLOTs was
proposed so that the performance of image denoising can be
improved [5].

For Poisson noise, the denoising process is different from
that of Gaussian noise. The variance of Gaussian noise is
stationary, whereas the variance of Poisson noise is non-
stationary. A denoising algorithm designed for Poisson noise
based on a Haar-Fize transform has been proposed in [6]. The
Haar-Fize transform cannot satisfy directional characteristics.
Zhang et al. proposed a hybrid approach that combines VSTs,
hypothesis testing, l1-penalized reconstruction and advanced
redundant multiscale representations [7]. The curvelet can
efficiently approximate smooth curve edges. But it has a
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question that how to construct a tight curvelet-like transform
in discrete domain. In [8], minimizing MSE estimation for
Poisson noise based on an unnormalized Haar wavelet trans-
form, so called PURE-LET, was proposed. PURE-LET is
very efficient in terms of denoising performance and com-
putational complexity. The proposed PURE-LET exploits
a linear denoising function to search the optimal solution.
However, the wavelet transform has a disadvantage of rep-
resenting diagonal geometric structures. Tight frames are
preferable for many applications since they reduce mathe-
matical handling of algorithms significantly.

The transforms were adopted in the above methods donot
satisfy both of tightness and symmetry simultaneously. The
orthogonality, symmetry, repeatability and directivity cannot
be satisfied at the same time for traditional wavelet transform.
Therefore, the diagonal textures, edges, and gradually chang-
ing content cannot be sufficiently represented. In order to
solve these problems and to improve the denoising perfor-
mance, a combination of the VST, SURE-LET approach and
multiple DirLOTs will be introduced in this paper.

The remainder of this paper is organized follows: prin-
ciple of the Poisson noise, and the Anscombe transform will
be briefly introduced in Section II. In Section III, we will de-
scribe the SURE-LET approach. The proposed multiple Dir-
LOTs will be given in Section IV. We will show the experi-
mental results in Section V, and finally, conclude this paper in
Section VI.

2. PRELIMINARIES

In this section, let us review the Poisson noise and Anscombe
Transform as well as its inverse transform.

2.1. Poisson noise

Suppose x = {xi}, i ∈ R2 is a noiseless image. We use
boldface b to denote the image observed through an image
acquisition system. The b consists of N independent Poisson
random variables bi depending on the underlying intensities
xi, with bi ∼ P (xi). Each pixel intensity bi can be considered
as a Poisson random variable with the following probability
density function

P (bi|xi) = e−xi
xbi
i

bi!
(1)

where xi denotes the mean of bi, which equals to its variance
σ2
i for Poission distribution. A realization of b can be thought

of as a noisy measurement of the intensity signal x. Poisson
noise p can be modeled by

pi = bi − xi, (2)

thus, E(pi|xi) = 0 and D(pi|xi) = xi.

Fig. 1: Principle of orthonormal wavelet denoising

2.2. Anscombe Transform

Many existing Gaussian denoising algorithms cannot be di-
rectly applied to Poisson denoising model due to the non-
stability and the dependence on the underlying intensity of its
variance. Aiming at solving this problem, several VST meth-
ods have been adopted [7], [6]. Among them, the Anscombe
transform was chosen due to its extensive application, effi-
ciency, and simplicity [1]. The expression of the Anscombe
transform can be given by

f(b) = 2

√
b+

3

8
(3)

where b and f(b) denote the observed image contaminated
by Poisson noise, the transformed data, respectively.

After the Anscombe transform is performed, the noise
throughout the whole image can be approximately modeled
by Gaussian distributed. As a result, it is possible to apply
Gaussian denoising algorithms for Poisson denoising. Inverse
transform of the Anscombe transform is needed in order to re-
turn the variance-stabilized and denoised data to the original
range. In this paper, a closed-form approximation of this ex-
act unbiased inverse was adopted [9].

3. SURE-LET APPROACH

The pixel values that were observed by an image acquisition
device can be defined as v = (v0, v1, ...vN−1)

T , where N is
the number of pixel values, and (·)T is the transpose opera-
tor. The denoising problem of the image corrupted by Poisson
noise is then equivalent to solve the noise-free image x based
on the observations v.

The observed picture v is usually corrupted with noise w
which is generally modeled as an AWGN with zero mean. Let
x be the original clean noiseless picture. Then, the observed
image v can be expressed by

v = x+w. (4)

Image denoising is to find a good candidate x̂ of unknown
noiseless picture x only from the observed picture v. Fig-
ure 1 shows the principle of orthonormal wavelet denoising,
where Ψ,Θ and ΨT are the forward discrete wavelet trans-
form (DWT), the shrinkage function and the inverse DWT,
respectively. The quality of image denoising is determined
by the transform Ψ and the shrinkage function Θ.

The SURE-LET approach is a technique to realize the
shrinkage function Θ. During the implementation of SURE-
LET, all of the priori hypotheses are able to be avoided on
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Fig. 2: Lattice structure of DirLOT (forward transform). d(z) is defined as a 2-D delay chain of size 4×1. Symbols W0, U0

and U
{d}
nd are orthonormal matrices with of size M/2×M/2.

Table 1: Characteristics of transforms

Property DirLOTs DWT Haar DWT DCT
(5/3,9/7)

orthonormal Yes No Yes Yes
symmetric Yes Yes Yes Yes

overlapping Yes Yes No No

the noiseless picture x with the AWGN assumption. Then,
the denoising problem can be reformulated as the search for
the denoising process that minimizes the Stein’s unbiased risk
estimate (SURE) [10], [11].

4. IMAGE DENOISING WITH MULTIPLE DIRLOTS

Compared with other transforms shown in Table 1, we pro-
pose to use the DirLOTs as a critically sampled orthonormal
wavelet basis. DirLOTs are able to completely satisfy the fol-
lowing three properties: orthogonality, symmetry, and over-
lapping with a non-separable basis. This transform can be
constructed with a lattice structure as shown in Figure 2 [13],
[14], [15]. In addition, it can also satisfy the fixed-critically-
subsampling, real-valued, and compact-support property.
Furthermore, DirLOTs can hold the trend vanishing moments
(TVMs) for any direction. The directional property works
well for diagonal textures and edges.

The corresponding polyphase matrix of order [Ny,Nx]
can be represented by

E(z) =

Ny∏
ny=1

{R{y}
ny

Q(zy)} ·
Nx∏

nx=1

{R{x}
nx

Q(zx)} ·R0E0,

where

Q(zd) =
1

2
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,

where W0, U0 and U
{d}
nd are orthonormal matrices with of

size M/2×M/2. All of them can be freely controlled during
the design process.

As a single DirLOT is not suitable for images with oblique
texture and edges in various directions. In order to express the
oblique texture and edges better, a dictionary is defined by as
the multiple DirLOTs as follows

D = [ΨT
0∪π

2
ΨT

ϕ1
ΨT

ϕ2
ΨT

ϕ3
...ΨT

ϕR−1
]T ,

where ΨT
0∪π

2
is a nondirectional symmetric orthonormal DWT

with the classical two-order vanishing moments (VMs) [12],
[13], and Ψϕi is a directional symmetric orthonormal wavelet
transforms (DirSOWTs) constructed by a DirLOTs with the
two-order TVMs for the direction ϕi. R corresponds to the
redundancy. Since the column vectors in D constructs a nor-
malized tight frame and satisfy

DTD =

R−1∑
k=0

ΨT
kΨk = RI,

which makes the process simple. In this paper, a heuristic
shrinkage was adopted. The heuristic shrinkage takes the av-
erage of the denoising results obtained by independent SURE-
LET denoising with Ψk for k = 1, 2, · · ·, R-1 [16], [5]. The
heuristic shrinkage is available and simply realized by

x̂ =
1

R
DTΘ(Dv) =

1

R

R−1∑
k=0

ΨT
kΘ(Ψkv).

In this paper, the number of hierarchical levels is set to five.

5. EXPERIMENTAL RESULTS

In order to confirm effectiveness of the Poisson noise removal
method based on multiple DirLOTs, experiments were con-
ducted. In these experiments, the interscale shrinkage func-
tion was adopted as in [3], where the parameter K was fixed
to 2 and T =

√
6σ. Several DirLOTs of polyphase order four

were adopted. The TVM angles ϕ1, ϕ2, ϕ3 and ϕ4 were set to
−π

6 ,
π
6 ,

2π
6 and 4π

6 , respectively.
In these experiments, “Galaxy”, “Cells”, “Lena” and

“Cameraman”, were used, where the sizes are all 256 × 256
pixels. Since the basis size of DirLOTs is Ly × Lx = 10 ×
10, Symlet of index 5 from the separable orthogonal DWT
was used as a reference. The support size of the Symlet
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Fig. 3: Denoising results for “Galaxy”. (a) Original image,
(b) Noisy image ( peak intensity = 30 ). (c), (d), (e) and (f) are
denoised results, where Sym5, SON4, PURE-LET and Multi-
ple DirLOTs denote Symlets of index 5, symmetric orthonor-
mal WT with the classical two-order VMs, Haar WT and
Multiple DirLOTs with the two-order TVMs, respectively.

Fig. 4: Denoising results for “Cameraman”. (a) Original im-
age, (b) Noisy image ( peak intensity = 5 ). (c), (d), (e) and
(f) are denoised results, where Sym5, SON4, PURE-LET and
Multiple DirLOTs, respectively.

of index 5 is identical to the adopted DirLOTs. The number
of levels for constructing DWTs is fixed as four. The vari-
ance was estimated by applying the robust median estimator
to the finest wavelet coefficients [17]. Peak intensity is the
maximum intensity of the noise-free signal.

Figure 3 and Figure 4 show parts of the experimental re-
sults. It can be seen that the quality (e.g., the diagonal textures
and the edges) of denoising image with the multiple DirLOTs

Table 2: Comparison of PSNRs among four methods for var-
ious peak intensities

Image Peak Noise Sym5 SON4 PURE-LET M-DirLOTs
5 12.27 27.09 26.86 27.91 27.70
10 16.52 28.73 28.71 28.93 28.94

Galaxy 20 20.35 30.31 30.25 30.54 30.55
30 22.47 31.60 31.54 31.44 31.83
60 25.79 33.59 33.54 33.43 33.81

120 28.97 35.54 35.48 35.21 35.80
5 11.96 26.72 26.58 26.68 26.78
10 16.08 27.97 27.89 28.02 28.11

Cells 20 19.85 29.50 29.49 29.46 29.50
30 21.84 30.28 30.19 29.96 30.23
60 25.10 31.86 31.79 31.03 31.87

120 28.24 33.40 33.37 33.07 33.56
5 9.89 23.33 23.28 23.35 23.46
10 13.41 24.54 24.46 24.22 24.71

Lena 20 16.63 25.95 25.98 25.88 26.30
30 18.44 26.91 26.93 26.48 27.28
60 21.61 28.58 28.67 28.09 29.09

120 24.64 30.42 30.49 30.16 30.90
5 9.55 22.83 22.72 22.78 23.08
10 13.03 24.12 24.04 24.07 24.46

Camera- 20 16.18 25.58 25.50 25.27 25.88
man 30 18.04 26.54 26.48 26.48 26.81

60 21.12 28.10 28.08 28.53 28.54
120 24.16 29.70 29.67 30.39 29.87

is better than the results of Sym5, SON4 and PURE-LET
[12]. The multiple DirLOTs shows better quality for diagonal
edges. Table 2 compares the denoising performances among
four methods for various peak intensities.

For PSNRs in Table 2, we can see that PURE-LET can
achieve highest PSNR when the peak intensity is 5 and 120
for “Galaxy” and “Cameraman”, respectively. Sym5 can
achieve highest PSNR when the peak intensity is 30 for
“Cells”. For other peak intensities, the proposed multiple Dir-
LOTs can achieve the highest PSNR for all the four images.
The experimental results imply that the multiple DirLOTs are
not only able to reproduce the diagonal structure appropri-
ately, but also generate fairly good results. However, there is a
potential property that the multiple DirLOTs have a tendency
to overly smooth fine textures out. This is because multiple
scaling filters are applied in the multiple DirLOTs, and two
important coefficients of the average of the approximation
and the responsible are also diluted out.

6. CONCLUSIONS

The SURE-LET approach for Gaussian noise was reviewed
as an orthonormal wavelet-based denoising technique. And
it can overcome the disadvantage that the representation of
diagonal geometric structures is relatively insufficient by us-
ing traditional separable transform. Therefore, the multiple
DirLOTs that can improve the SURE-LET approach was pro-
posed to remove Poisson noise. Experimental results show
that the combination of the VST, SURE-LET, and multiple
DirLOTs significantly improved the denoising performance,
and their effectiveness has been verified.
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