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ABSTRACT

In the guided filter that performs operations such as denoising and
contrast correction with the help of a guide image, the positions
of corresponding subjects need to be completely aligned, otherwise
the misaligned regions in the output image are deteriorated by blur.
In this paper, we propose a guided filter for images which include
moving dynamic regions. Our filter uses correspondences of lo-
cal covariance matrices instead of using the conventional pixel-to-
pixel correspondences. In addition, we also propose a classification
method to detect the dynamic regions by using the support vector
machine. Combining two kinds of guided filters for static/dynamic
regions, more natural resulting images are obtained.

Index Terms— color transformation, guided filtering, local co-
variance, support vector machine, image composition

1. INTRODUCTION

When restoring images deteriorated by noise and saturation of inten-
sity, the use of multiple images provides better results than restora-
tion from a single image. As for methods that use multiple images,
this paper deals with guided filtering (GF) [1-4] that uses a guide (or
called guidance) image under a different photographic conditions.
This GF has recently been applied to a variety of applications such
as contrast correction [5] and stereo matching [6]. In particular, tar-
get applications of our GF described in this paper are denoising and
tone mapping that can handle a set of input and guide images with
different color and intensity [2,4, 5].

In general, the color distribution of a local image region (patch,
for simplicity) has a feature called a color-line [7], that is, its shape
extends linearly due to shading, or spreads planarly due to a mix-
ture of colors. In a corresponding pair of patches taken from the
same scene in the input and guide images, but taken under differ-
ent conditions (e.g., a different white balance), the shapes of the two
color distributions tend to be similar, and thus one distribution can
be approximated by the rotated and shifted version of the other dis-
tribution. Utilizing this feature, the existing GFs [1-4] deal with the
problem of obtaining a transform matrix that minimizes the transfor-
mation error in each patch. Specifically, at a target pixel ¢ and its
neighboring pixels j in a patch §2;, the local pixel colors of the guide
image I; € R® (such as RGB or YCbCr) are transformed by a patch-
wise transform matrix A; € R**® and an offset vector b; € R?
to make them more like the local pixel colors of the input image
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where w;; are weights introduced to remove outliers and R is a reg-
ularizer to guarantee the existence of solutions A; and b;'. When
applying this GF to moving dynamic regions, e.g., rustling leaves
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and ruffling water surfaces, the transformation errors increase due to
the misalignment of pixels p; and I;. As a result, matrix norms de-
crease ||A;|| — 0 to reduce errors, and the contrasts of transformed
patches decrease: A;I; —0.

In this paper, to address the above mentioned problem, we pro-
pose a novel GF specialized to handle the dynamic regions. As for its
practical implementation, patch colors are transformed so as to con-
form the two covariance matrices of a patch pair, because the shape
of a color distribution is numerically representable by its covariance
matrix. The covariance matrices are obtained from color distribu-
tions {p; } and {I;} independently. Thus the conventional pixel-to-
pixel correspondences are not required in our method. However, as a
trade-off of not using these correspondences, discolorations (uneven-
ness of color) are prone to arise in the color transformation. Thus the
image qualities in motionless static regions are inferior to those of
our conventional GF [4].

Our previous GF [4] and the proposed one in this paper have ad-
vantages and disadvantages, depending on the amount of noise and
object motion. To utilize the advantages of both methods, we aim
to classify the static and the dynamic regions, and apply a more ap-
propriate GF for each region. As for the classification method, due
to the substantial difference in color and intensity between the input
and guide image pair, existing methods for image/video processing
are unfortunately not applicable. Instead, we focus on the matrix
norms and transformation errors in (1) as the main cause of the blur
arising in output images, and introduce a classification method us-
ing these features. Our method adopts the support vector machine
(SVM) [11] as a two class classifier, and classifies the static/dynamic
regions by using feature vectors obtained from the GF [4] for static
regions. The classified dynamic regions are processed by our pro-
posed GF, while the static regions are processed by the conventional
GF [4].

2. COLOR TRANSFORMATION USING
CORRESPONDENCES BETWEEN COVARIANCE
MATRICES

The aim of the proposed GF for dynamic regions is to obtain a trans-
form matrix A; and an offset vector b; set, which is the result of
conforming the shapes of two color distributions of each patch pair.
The shape of a color distribution is numerically represented by a co-
variance matrix, and we formulate the optimization problem using
(1) with a constraint on the covariances:

Eq.(1) s.t. cov({A:I; + b;};) =cov({p;}), 2)

where the definitions of the variables are the same as for (1). Since
there exist some solutions for A; and b; that satisfy the constraint

Eq. (1) that represents the local linear model was introduced by [8] for
image matting, and has been used in many applications [9, 10]. The problem
described in this paper is specific to a case where p; is explicitly known such
as a guide image.
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(described in Sec. 3), a solution that roughly minimizes (1) is se-
lected. A covariance matrix cov({x;}) € R**® is calculated using

1 _ —\T
cov({x;}) = o jezﬂi(x]'—xz)(x]—xﬁ , 3)

X— 1 nr i .
where X; = szeﬂiw” x; denotes a weighted mean, and w;;

are weights for removing outliers. The selection of the weights de-
pends on the application. In the experiment shown in Sec. 5, we set
them in the same way as [2], and omit a detailed discussion in this

paper.
2.1. Solution for b;
Expanding (2) using (3), and substituting I} = I; — I; and p; =
pj — P;, we get

cov({A I +bi}) —cov({p}})

1 1
= A(=—T117)AT - ( pip) @
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= Acov({I; AT — cov({p}}).
In this process, the offset vector b; is eliminated, and unrelated to
this equation. Instead, as a substitution, by differentiating (1) w.r.t.
b and setting it zero, b; =p,—A;L; is obtained. Further, substituting
the obtained b into the affine transform A;I; + b, we get A;(I;—
I;)+p; which is rewritable as A;I;+p,;. Comparing A;I’;+p; and
AT +b; in (4), identically we obtain

b; =p;. &)

2.2. Solution for A;

The solution of A; is linked to the decorrelation and reconstruction
used in the principal component analysis (PCA).

First, the covariance matrices cov({I}}) and cov({p}}) are de-
composed using singular value decomposition (SVD) as

cov({I}) =U;%; U], cov({p}})=V.E:V]. (6)

Then they are split into two matrices as

1 1 1 1
QzQzT = (Uizf )(21‘2 Uzr)y RszT = (ViEf )(Ezz VzT)a (7

where U = [u1|uz|us] and V = [v1|va|vs] € R**3 (i is omitted for
simplicity) are orthogonal matrices consisting of the 1st, 2nd, and
3rd principal axes of each color distribution, which are given by the
eigenvectors of the covariance matrices. 3 = diag((rf, o2, ag) and
E = diag(¢7,£3,£3) € R¥*® where o1, > op11 and &g > &4 are
diagonal matrices consisting of variances along the principal axes of
each color distribution, which are given by the eigenvalues of the
covariance matrices. _

Next, the calculation of {I’} = Q; '{I/} decorrelates the data

so that its covariance becomes an identity matrix: cov({IZ}) =1d.
Then, the calculation of {p} = Rl{f;} reconstructs the data so that

its covariance becomes the same as {p; }: cov({f);}) =cov({p}}).
Thus the solution of A; is given by

[NE

A =R, Q; ' = (V,E; )(zi‘%U?). ()

7

When substituting (6), (7), and (8) into (4), a zero matrix results:
R.Q 1 (Q:Q1)Q; "R — R;RT =0. However, there are several
solutions for A; since the order of the components of R; and Q;
is arbitrary. Some solutions cause discolorations. A method to deal
with this problem is described in Sec. 3.

2.3. Global color transformation

The local color transformation of each patch is assumed to be
{A;I; +b;};cq,, while the practical color transformation for the
whole image is performed so as to obtain the optimal pixel colors
q; using all the computed values of A; and b; [1,2,4]. The energy
function is defined as

argmqin Z Z wij|| AL + b — q;|3. )

i JEQ

When the weights are constant w;; = 1, it corresponds to the stan-
dard GF [1]. The solution is given by

q; = AL + b, (10)

where A; = > o Ajand b; = 3 3°. ., b; are mean values
around pixel ¢, N 1s the number of pixels, and the weights are nor-
malized so that N =3 wi;. When w;; € {0, 1}, a rough but fast

calculation method is described in [3]. In other general cases, A;
and by are obtained by convolutional filtering of time-variant filters
with coefficients w;; and coefficient images that have A; and b; as
their pixel values. For details, please refer to [4].

3. ANALYSIS AND REDUCTION OF DISCOLORATIONS

The color transform matrices A; obtained in the preceding section
have some drawbacks, and cause discolorations when being used
for color transformation directly. In this section, we mention two
problems that cause the discolorations, and describe a solution for
the problem.

3.1. Correction of the order and signs of eigenvectors

Although a color transform matrix is given as the product of two
matrices U; and V; composed of eigenvalues and eigenvectors as
shown in (8), it has two ambiguities: (i) the order of the princi-
pal eigenvectors; (ii) the direction (sign) of the eigenvectors. The
first problem arises from the fact that the color distribution of a uni-
form color region becomes spherical. Thus the order of the axes is
easily switched due to the influence of noise, e.g., [ui|uz|us] —
[u1|us|uz]. The second problem is that the signs of the eigenvec-
tors are generally not specified. Thus there is a possibility of sign
inversion in each column, e.g., [u1|uz|us] — [tui| £ uz| £ us]. To
address these problems, we assume the following:

e Assumption 1: A patch pair has similar color distribution
shapes. Furthermore, the order of the principal axes is the
same as that of the paired patch uy, <+ vj. Although the color
distribution becomes spherical in a uniform color region and
the order of the axes is undecidable, it matters little because,
in such a region, the variance along each axis is similar

e Assumption 2: On the k’th axis, the two eigenvectors
of a patch pair have the same orientation. The direction
is corrected using the sign of the inner product: ui :=
uy - Sign(uka).

3.2. Correction for eigenvalues in =; and 3;

The matrix R; in A; =R; Q" 1, e, R;i= ViEi% is obtained from
noisy data, and the influence of the noise mainly appears in Z;. That
is, when a color distribution is stretched by the influence of noise,
its variances given by diagonal values {£7,£3, €3} increase. This
leads to an excessive expansion of the transformed color distribu-

tion, and discoloration emphasis. From our knowledge, the standard
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(a) Guide image (b) Noisy input

(c) Our previous GF [4] (d) Proposed GF

Fig. 1. Color and contrast transformation by GFs for dynamic and static regions. Top: results of the dynamic region. Bottom: results of the
static region. From left to right, guide images with ideal sharpness but the incorrect contrast (a), noisy input images with ideal contrast (b)
(additional noise with standard deviation 0.06 is added), and results of our previous GF (c) and proposed GF (d). The areas inside the red

circles are deteriorated.

deviations along the 2nd and especially 3rd axes {2, €3} are linked
to the discolorations. Even if original data do not include any noise,
expanding the color distribution toward the 2nd and 3rd axes empha-
sizes the discolorations.

As mentioned above, causes of the discolorations are associated
with the diagonal values of =;, more specifically, the ratios of the di-

agonal elements = 3 3, 3 —dlag([frl1 , frz , o2]) included in R.Q; .
To reduce dlscoloratlons we restrict the diagonal values of =; by
comparing them with those of 3; that do not include noise as fol-

lows:

e The 3rd eigenvalues are the main cause of dlscoloratlons. The
smaller one is used: &3:=min(3,03), L.e., 22 < 1;

e The 2nd eigenvalues are replaced with those obtained from
data without noise: &2 :=02, i.e., 52 =1;

e The 1st eigenvalues are used w1th0ut any correction.

4. CLASSIFICATION OF STATIC / DYNAMIC REGIONS
AND BLENDING METHOD OF GUIDED FILTERS

As a result of the GFs described in the previous sections, Fig. 1
shows the resulting images of our previous GF [4] for static regions
(c) and proposed GF for dynamic regions (d). As can be seen in (d),
the proposed GF yields a natural image without blur for the dynamic
region, while it unfortunately yields discolorations for the static re-
gion due to the noise in the input image. Since each method has
advantages and disadvantages, we aim to use an appropriate GF se-
lectively region-by-region so as to obtain more natural results.

We find that the blur artifacts of existing GFs are associated with
the norms of the transform matrices || A;||, i.e., they play the role of
a scaling factor for the contrast of each patch, and as they decrease,
the value of A;I; becomes closer to 0. Thus the result approaches
the mean colors of the patches A;I;+b; to b;. However, this also
indicates that the dynamic regions can be classified by observing
the norms and transformation errors of (1). Thus we classify the
static and the dynamic regions by using the support vector machine
(SVM) [11,12] 2. The SVM is performed using a training phase and
a test phase. The details of the training phase are described in the
next section. The results of the test phase are shown in Sec. 5.

4.1. SVM Training and Image feature vector

For the SVM training, we use the multiple image sets shown in
Fig. 2: (a) and (b) are guide and input images, and (c) is a scrib-
ble image to specify static regions (black scribbles) and dynamic

2In the implementation, we use the SVM-light [13] with a radial basis
function kernel [11,12], and simply use default parameters.

(b) Input
Fig. 2. Sample sets of images used in the SVM traning phase.

(a) Guide image (c) Scribble

regions (white scribbles). We define pixel labels for the static re-
gions as (y; = —1) and the dynamic regions as (y; =+1). The gray
regions in (c) are not used. Then we define feature vectors (€ R?)
for classifying the labels as follows:

o Frobenius norm of a transform matrix ||A;||% € R';
e 5 norm of an offset vector ||b;||3 € R*;
e Error of ﬁdelity term: ZjeQi Wij HAzI] +b; — P; ||% c R'.

These three scalar values are bundled as a feature vector for each
pixel. The second feature is intended for discolorations occurring
in dark regions where ||b|| = 0 and the shapes of color distributions
become spherical. Using these labels and feature vectors, the SVM
training is performed.

4.2. Classification and Blending methods

When the labeling is done as described above, the classification re-
sults y; of the dynamic regions are given as positive values (y; > 0),
while those of the static regions are given as negative values (y; <0).
The proposed GF is applied to pixels classified as dynamic regions,
and the A; matrices are recalculated (b; are shared with all the re-
gions).

To this end, we simply blend the resulting images of the conven-
tional GF q; and proposed GF qj by pixel-wise blending:

=(1—aly)) ai +a(y:) g, (11)

where a(y;) € [0, 1] denotes a blending coefficient defined on the
basis of the pixel label y;. As for the function «(-), for example,
sigmoid functions such as a(y;) = (1+exp(—By;)) "' € [0, 1] are
available, where 3 is a parameter to control the transition width. The
experimental results using this blending method are shown in Sec. 5.
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(a) Guide image

(b) Noisy input

(c) Classified

Fig. 3. Results of the SVM test phase. Using the image pair (a) and (b), the SVM automatically outputs (c).

i |

(d) Our previous GF

(e) Proposed GF

(f) Blended GF

Fig. 4. Results of flash/no-flash image integration, i.e., denoising of a no-flash image. Top: results of standard methods. Bottom: results of

our methods. The area inside each red circle is deteriorated.

5. EXPERIMENTAL RESULTS

To validate the performance of SVM classification and blending us-
ing (11), we performed the SVM test phase and show the resulting
images. As an application, we chose the flash/no-flash image com-
position (denoising of a no-flash image), with the use of GFs (this
application was originally proposed in [15, 16]) because the flash
(guide) image and the no-flash (noisy input) image include many
bad correspondences caused by under/over-exposures in areas other
than the dynamic regions. As for the images, intensities were nor-
malized to the range [0,1], and this test phase was performed by
using a noisy input image with additional Gaussian noise (standard
deviation is 0.06).

Fig. 3 shows a result of classification by SVM. The dynamic
regions in the image pair (a) and (b) are automatically classified as
shown in (c), where (c) indicates a coefficient map «(y;) in (11),
and static regions are displayed in black («(y;) =0), while dynamic
regions are displayed in white (a(y;) =1).

Fig. 4 shows a comparison of our proposed GF and blended GF
with standard methods [1,14,15], and our conventional GF [4]. Each
method is prone to produce some artifacts on the leaves of the maple
tree. The BM3D [14] is shown here as a representative denoising
method for a single image (a). It however causes unnatural patterns
on the resulting images. From the original method of this applica-
tion [15] (b) and the standard GF [1] (c), similar results are obtained
and their dynamic regions suffer from blur artifacts. This is mainly
caused by the pixel misalignment of the dynamic regions. On the

other hand, our previous GF, i.e., weighted GF, reduces the blur ar-
tifacts but still leaves discoloration artifacts. The proposed GF gives
good results except for discoloration artifacts in the dark regions.
The final result (f) yielded by blending (d) and (e) has a natural ap-
pearance. The main improvement is a decrease in the discoloration
artifacts, for example, the above mentioned dark regions of (f) are
replaced by those of (d).

The classification performance of the SVM shown in Fig. 3 (c)
is actually thought to be a little excessive since some static regions
are incorrectly detected (e.g., beams of the bell house). However,
using similar sets of image pairs in the training phase, the accuracy is
improved. This problem is similar to image matting [8,17] especially
to the latter method. That is, giving sample labels to partial regions
as scribbles or trimap, the other regions are automatically labeled.
Therefore the techniques developed in image matting may be useful
to improve the classification accuracy.

6. CONCLUSION

We presented a GF for dynamic regions and a method to classify
static / dynamic regions. Instead of using pixel-to-pixel correspon-
dences, our method introduces correspondences of local covariance
matrices. In classification, we employed a support vector machine
and used numerical values obtained from equations as a feature vec-
tor. The combination of GFs can yield images with less artifacts. In
future work, blending and combining methods of GF equations will
be considered in order to further reduce artifacts.
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