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ABSTRACT

We propose a new structure-preserving dual-energy (SPDE)
CT inversion technique for luggage screening, which can mit-
igate metal artifacts and provide precise object localization.
Such artifact reduction can increase material identification ac-
curacy in security applications. Our main objective is for-
mation of enhanced photoelectric and Compton pixel prop-
erty images from dual-energy X-ray tomographic data. We
achieve this aim by incorporating three important elements in
a single unified framework. First, we generate our images as
the solution of a joint optimization problem, which explic-
itly models the projection process. Second, we include metal
aware data weighting to reduce streaks and metal artifacts.
Third, we estimate a regularized joint boundary field and ap-
ply it to both the photoelectric and Compton images in order
to improve object localization as well as smoothing inside the
objects. We evaluate the performance of the method using
real dual-energy data. We demonstrate a significant reduction
in noise and metal artifacts.

Index Terms— Dual-Energy X-ray tomography, Recon-
struction, Structure-preserving, National security

1. INTRODUCTION

X-ray computed tomography (CT) systems have been widely
used for medical and security applications. CT systems allow
non-destructive evaluation of luggage, providing an estimate
of the X-ray attenuation inside a scanned object. The attenu-
ation depends on the chemical composition of the object and
also on the energy of the X-ray photons. In Dual-Energy CT
(DECT), two energy-selective measurements of the attenua-
tion are taken. Since additional energy-dependent informa-
tion can lead to superior material discrimination, DECT can
potentially provide improved detection capability over con-
ventional single-energy CT.

In general, the goal of DECT methods is to estimate a
small number of material-specific parameters at each image
location and use them for material discrimination. A pair of
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commonly used parameters is the photoelectric and Compton
coefficients, which are derived from a physics-based X-ray
attenuation model. Several DECT techniques have been sug-
gested since the 1970s [1, 2, 3]. They are mostly targeted at
medical applications and do not deal with image artifact mit-
igation. In the security application, many different materials
may be scanned in various degrees of clutter and metal objects
are common. In this application, image noise and metal arti-
facts are more severe and can lead to less reliable estimates
of the photoelectric and Compton coefficients. Therefore, a
more rigorous inversion technique is required than the com-
monly used filtered back-projection (FBP) method.

We propose a new structure-preserving dual-energy inver-
sion method (SPDE) for the formation of enhanced photoelec-
tric and Compton coefficient images. We form the images as
the solution of an optimization problem which explicitly mod-
els the physical tomographic projection process. Metal in-
duced streaking is reduced by appropriately down-weighting
unreliable data. A boundary-preserving prior based on [4] is
incorporated to improve object localization. In particular, we
estimate a mutual boundary-field along with the photoelectric
and Compton images. The boundary field provides accurate
object localization and allows smoothing inside the objects.

We test our method on real dual-energy data. We evaluate
the results visually and quantitatively. We show that using the
SPDE framework both noise and metal artifacts in photoelec-
tric and Compton images are greatly reduced. This artifact
reduction can lead to more accurate material identification.

2. BACKGROUND

2.1. Dual-Energy CT measurements

In Dual-Energy CT, multiple measurements are acquired with
different spectral functions. The measurements are modeled
as [5]:

qi(θ, t) =

∫
vi(E)e

−
∫
Lθ,t

µ(~r,E)dl
dE, i = 1, 2 (1)

where i is the system spectrum index, θ is the projection an-
gle, t is the projection displacement, E is the energy level,
~r is the spatial location, vi(E) is the ith spectrum at energy
E, µ(~r,E) is the linear attenuation coefficient (LAC) at loca-
tion ~r and energyE, and

∫
Lθ,t µ(~r,E)dl is the line integral of

µ(~r,E) over the ray path defined by θ and t.
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Often qi(θ, t) are normalized by
∫
vi(E)dE and con-

verted to the negative log-space, which results in the follow-
ing equations for i = 1, 2:

zi(θ, t) = − ln

(∫
wi(E)e

−
∫
Lθ,t

µ(~r,E)dl
dE

)
(2)

where wi(E) =
vi(E)∫
vi(E)dE

. The quantity zi(θ, t) is called

the ith measured sinogram.

2.2. Photoelectric-Compton decomposition

In the energy range of CT, the LAC is affected primarily by
two physical phenomena - the photoelectric effect and Comp-
ton scatter. In [1] the following representation of the LAC
was proposed

µ(~r,E) = xp(~r)fp(E) + xc(~r)fc(E) (3)

where xp(~r) and xc(~r) are the photoelectric and Compton co-
efficients of the material at location ~r, respectively, and fp(E)
and fc(E) are the known photoelectric and Compton basis
functions, shown in Figure 1.

(a) Photoelectric (b) Compton

Fig. 1. Photoelectric and Compton basis functions.

Using the decomposition (3), the sinograms (2) become:

zi(θ, t) =

− ln

(∫
wi(E)e−(yp(θ,t)fp(E)+yc(θ,t)fc(E))dE

)
(4)

where yp(θ, t) =
∫
Lθ,t xp(~r)dl and yc(θ, t) =

∫
Lθ,t xc(~r)dl.

The quantities yp(θ, t) and yc(θ, t) are called the photoelec-
tric and Compton sinograms, respectively.

In many DECT methods a decomposition such as (3)
is used and the goal is to reconstruct the coefficient im-
ages, xp(~r) and xc(~r) given measured dual energy sinograms
z1(θ, t) and z2(θ, t). Since the problem is nonlinear and
high-dimensional, a well-known solution approach is to sep-
arate it into two sub-problems [1]. In the first sub-problem,
the nonlinear set of equations (4) is solved for yp(θ, t) and
yc(θ, t) given z1(θ, t) and z2(θ, t). This is implemented, for
example, by polynomial fitting [1] or least squares [3]. The
second sub-problem is reconstruction of the photoelectric and
Compton images xp(~r) and xc(~r). This is usually modeled
as a linear problem and solved using FBP.

3. PROPOSED METHOD

Our focus in this work is on improving the second image in-
version step in DECT. Given photoelectric and Compton sino-
grams, our goal is to generate photoelectric and Compton im-
ages with reduced noise and artifacts for high-cluttered lug-
gage scans.

3.1. General Formulation

We consider the discretized problem, where z1 and z2 denote
vectors containing dual-energy measurements for a set of θ
and t points, and yp and yc are vectors containing the photo-
electric and Compton sinograms at the same points. Similarly,
xp and xc are stacked discretized photoelectric and Compton
coefficient images. We assume that yp and yc have been found
using e.g. least square or other methods, and are given as the
input to our method.

Given yp and yc, we jointly estimate xp, xc, and a mutual
boundary field s by solving the following problem:

minimize
(xp≥0,xc≥0,s)

{
||yp − Txp||2Wz

+ ||yc − Txc||2Wz

+ λ21||Dxp||2Ws
+ λ22||Dxc||2Ws

+ λ23||xp||22 + λ24||xc||22
+λ25||Ds||22 + λ26||s||22

}
(5)

where λi, i = 1, ..., 6, are non-negative regularization param-
eters, Wz is a data weighting matrix, Ws = diag((1 − s)2),
T is the tomographic system forward projection operator, and
D is a derivative operator. The weighted norm is defined as
||v||2M = vTMv.

Three effects are explicitly captured in the formulation
(5). First, the tomographic model T is explicitly used. Sec-
ond, as we explain next, the sinogram data are weighted
through Wz . Third, explicit use is made of an object bound-
ary field s.

3.2. Data weighting

In the presence of metal and high clutter some rays are signif-
icantly attenuated and the measured values for these rays are
very small. Since not many photons go through, these data
points are less reliable. We apply explicit data weighting to
account for this phenomenon. The weighting matrix Wz is
given by

diag(Wz) =
(
z21 + c

)−1
(6)

where z1 is the high-energy measured sinogram and c is a con-
stant. This weighting reduces the contribution of the unreli-
able rays which go through dense metal objects. The weight-
ing is based on the high-energy sinogram because it is more
reliable.
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3.3. Solution approach

The cost function in (5) depends on three coupled variables
- xp, xc, and s - and the resulting optimization problem is
non-linear. In the absence of the non-negativity constraint,
the following equations must hold at the optimum:

(TTWzT + λ21D
TWsD + λ23)xp = TTWzyp (7)

(TTWzT + λ22D
TWsD + λ24)xc = TTWzyc (8)

(B + λ25D
TD)s = Bu (9)

where B is diagonal, Bjj = λ21[Dxp]
2
j + λ22[Dxc]

2
j + λ26, and

uj =
λ21[Dxp]

2
j + λ22[Dxc]

2
j

λ21[Dxp]
2
j + λ22[Dxc]

2
j + λ26

We iteratively solve (7) and (8) for xp and xc while keeping s
fixed, and solve (9) for s while keeping xp and xc fixed. We
enforce the non-negativity constraint in (5) by projecting the
solution onto the constraint set at every iteration.

3.4. Practical implementation

Since problem (5) is non-quadratic, an effective initialization
scheme is needed. To avoid local minima and guide the solu-
tion to a globally acceptable answer, we first solve (5) with
one set of regularization parameters which emphasizes the
Compton component contribution to the boundary field esti-
mate. This approach exploits the fact that the Compton sino-
gram is more informative on object structure than the photo-
electric sinogram. In this manner we obtain a more reliable
boundary field s early on. Then we switch to another set of
parameters which give equal weights to the photoelectric and
Compton terms in estimating the boundary field. This allows
the boundary field we obtained to control smoothing in both
the photoelectric and Compton images.

4. EXPERIMENTS AND RESULTS

4.1. Experimental setup

We tested our method on data acquired by the Imatron C300
electron-beam medical scanner. The dataset includes scans
of different benign objects, such as bottles of water and rub-
ber sheets, in isolation and inside bags with various degrees
of clutter. Examples of the objects scanned are shown in Fig-
ure 2a. Dual-energy data was measured by repeating the same
scan with two different source spectra. For our experiments
we used 95kVP and 130kVP spectra (kVP denotes the max-
imum voltage applied to the X-ray tube). Estimates of the
spectra are shown in Figure 2b. It was modeled by Dr. Taly
Gilat Schmidt from Marquette University using SPEC78 [6].

We processed two-dimensional scan slices and started
with rebinned parallel sinograms with 720 angles and 1024

(a) Scanned objects
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Fig. 2. Left: examples of objects appearing in the scans: a
thin rubber sheet, a water bottle, and a teflon cube. Right:
estimates of the Imatron system spectra used when acquiring
dual-energy measurements (normalized units).

bins. The reconstructed images are 512×512 with pixel spac-
ing of 0.928 mm. The photoelectric and Compton sinograms
were estimated from the dual-energy measurements using
Matlab’s ‘lsqnonlin’ least-square function and equation (4).
As a baseline method we applied the Imatron FBP inversion
algorithm to the photoelectric and Compton sinograms indi-
vidually using code provided by Dr. Patrick La Riviere from
Univeristy of Chicago. We label this method FBP.

In the implementation of SPDE we calculated the interme-
diate linear inversions using Matlab’s ‘lsqr’ function and an
estimate of the Imatron forward projection matrix provided
by Penchong Jin from Purdue University. The data weight-
ing parameter c in (6) was set to 5, based on sinogram val-
ues of rays going through metal (around 6-8). The choice of
regularization parameters λi in (5) was guided by the princi-
ples discussed in section 3.4. The first set of parameters was:
λ1 = 0, λ2 = 3, λ3 = 0, λ4 = 0, λ5 = 0.1, λ6 = 0.1. The
second set was: λ1 = 2, λ2 = 2, λ3 = 2, λ4 = 0, λ5 =
0.1, λ6 = 0.1. Since the Compton image in our examples
was stable we set λ4 to zero. A total of ten iterations were
performed, five with the first set of parameters and 5 with the
second set. With the current implementation SPDE is much
more computationally intensive than FBP, but it is compara-
ble to other model-based iterative approaches.

4.2. Reconstruction results

We show the results for two example slices which have metal
objects and high clutter. Figure 3 shows the data weights
applied in the reconstruction of example slice 1. Figures 4
and 5 show the reconstructed photoelectric and Compton im-
ages. The figures demonstrate that SPDE significantly re-
duces noise and improves object localization. Reduction in
metal artifacts is especially noticeable in the Compton im-
ages. For example, by comparing the FBP and SPDE Comp-
ton results in Figures 4c and 4d, it can be seen that the streaks
in the water bottle on the bottom right are removed. Similarly,
in Figure 5d the thick black streak appearing in the bottom of
the teflon cube is much less visible than in Figure 5c.
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Fig. 3. Sinogram and data weights of example slice 1.

(a) FBP: photoelectric (b) SPDE: photoelectric

(c) FBP: Compton (d) SPDE: Compton

Fig. 4. Photoelectric and Compton coefficient images given
by FBP (left) and SPDE (right) for example slice 1. This slice
includes a bottle of water and a rubber sheet. Photoelectric
units are keV3/cm and the gray scale range is [1000, 10000].
Compton units are 1/cm and the gray scale range is [0, 0.3].

4.3. Quantitative evaluation

For the dataset we used, ground truth labeling masks for a few
selected objects were provided by Stratovan Corp. The la-
beled objects included 11 water bottles, 4 doped water bottles
and 13 rubber sheets. Using these ground truth object masks
we computed the signal to noise ratio (SNR) for the recon-
structed photoelectric and Compton images. SNR is defined
as mean divided by standard deviation. Figure 6 shows the
mean percent improvement in SNR of SPDE relative to FBP
for each of the materials. It can be seen that in both Compton
and photoelectric images the SNR has improved significantly
for all the materials.

(a) FBP: photoelectric (b) SPDE: photoelectric

(c) FBP: Compton (d) SPDE: Compton

Fig. 5. Photoelectric and Compton coefficient images given
by FBP (left) and SPDE (right) for example slice 2. This slice
includes a teflon cube, a bottle of water and rubber sheets.
Image units and display ranges are the same as in Figure 4.
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Fig. 6. Mean percent improvement in SNR of SPDE relative
to FBP. The black line segments denote the standard error.

5. CONCLUDING REMARKS

In this paper we presented a new structure-preserving dual-
energy method, SPDE. We demonstrated that it reduces noise
and metal artifacts in photoelectric and Compton coefficient
images while keeping boundary localization. This may in-
crease accuracy of material identification in security applica-
tions.
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