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ABSTRACT

In aviation security, checked luggage is screened by com-
puted tomography (CT) scanning, followed by automatic tar-
get recognition from the CT images. Metal objects in the
bags cause image artifacts that degrade object representation,
leading to increased false alarms. We develop a new method,
which isolates and reduces artifacts in an intermediate image,
based on a numerical optimization that de-emphasizes metal
and has a novel constraint for beam hardening and scatter. Re-
sults on test bags showed excellent artifact reduction, even for
multiple metal objects.

Index Terms— metal artifact reduction, computed to-
mography, luggage screening, constrained optimization

1. INTRODUCTION

In aviation security, checked luggage is scanned by explo-
sives detection systems (EDS). Many EDS are based on x-ray
computed tomography (CT). Automatic target recognition al-
gorithms in these systems analyze the CT images for threats.
Metal objects present in the luggage create image artifacts ap-
pearing as shadows or streaks. These artifacts misrepresent
the surrounding objects, and may lead to apparent splitting of
single objects, or the merging of separate objects. Reducing
the metal artifacts will likely lead to lower false alarms [1].

Metal artifacts are caused by beam hardening, photon
scatter, partial volume effects, photon starvation, and data
sampling errors [2, 3]. Beam hardening and scatter cause
low-frequency artifacts [2], which are more difficult to re-
move, while the other sources result in narrow streaks.

Algorithms for metal artifact reduction (MAR) have been
developed in medical CT imaging since the 1980s [4]. De-
spite the advances, there are no widely accepted solutions,
and MAR continues to be a challenging research problem.
There are three main approaches - sinogram replacement [4–
15], energy decomposition with multiple scanning spectra,
e.g., [16], and iterative reconstruction (IR) [17–20]. All these
methods operate in Radon space (also called projections or
sinograms).

Sinogram replacement has been the most explored be-
cause of its low complexity. In methods based on sinogram

replacement, a filtered-backprojection (FBP) image is recon-
structed from scanner projections, and the metal objects are
identified by image segmentation techniques [8,21]. The pro-
jection data corresponding to rays that pass through metal
(called traces) are identified by calculation, by forward pro-
jection (reprojection) of the metals or even by segmentation
in the sinogram. Metal trace data in the sinogram are replaced
with an estimate of underlying data, and the corrected sino-
gram is reconstructed by FBP. It is difficult to estimate the un-
derlying data accurately. Interpolation across the metal traces
removes edges from high-contrast structures and renders the
projections inconsistent, leading to secondary artifacts. In re-
cent years in medical MAR, image segmentation has been
used to identify high-contrast structures, to develop an inter-
mediate image that is called a prior-image [8, 12, 14, 22]. The
prior-image is reprojected and thus used to guide data replace-
ment in the scanner sinogram. In luggage, image segmenta-
tion cannot separate artifacts from data, because assumptions
cannot be made regarding the contents of the images, and be-
cause more metal and more artifact interference are present in
luggage images.

IR algorithms, such as those based on expectation maxi-
mization [23] or algebraic reconstruction technique [24], are
used in x-ray CT to reconstruct data with poor signal-to-noise
ratio, and where there is missing data [25]. A recent approach
is to use IR or numerical optimization for MAR [13, 26, 27]
in medical imaging. These algorithms discard all metal trace
data. IR and numerical reconstructions usually result in a loss
of texture or resolution, so in [13], the optimum solution is
used as a prior-image, which is then reprojected, and metal
traces from the original sinogram are replaced with the repro-
jected traces.

In luggage screening, a third or even half the sinogram
may contain metal. If all these data are discarded, the recon-
structions are poor, as we will demonstrate. Our approach is
also hybrid in that it reconstructs a prior-image by optimiza-
tion, followed by sinogram replacement and FBP. However,
we retain the metal projection data with reduced weights, and
add a new constraint. Our target prior-image is artifact-free
and sparse. The final image has the texture and resolution of
FBP reconstruction.
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2. METHODS

We first describe a convex optimization problem to construct
a prior-image, neglecting any loss of spatial resolution, to ex-
plain the objective function and constraint. Then we describe
the practical implementation of our complete algorithm.

2.1. Prior-image as a solution of a convex problem

An image in vectorized form is denoted x and the scanner
sinogram by b. Let the forward-projection model for log-
attenuation projection data be represented by A. Each cell
of the matrix A, aij , contains the fraction of the voxel j that
goes into the measured data sample i. For noise-free and arti-
fact free data, the following equation holds:

Ax = b. (1)

We minimize a regularized weighted least squares (WLS) er-
ror as shown in Eqn. (2). In WLS problems, the weights de-
emphasize samples (ray-sums) that have higher noise. How-
ever, our weights de-emphasize the samples according to the
attenuation through metal.

min
x

(Ax− b)TW (Ax− b) + β||x||TV

subject to IP (Ax− b) � 0.
(2)

We first discuss the objective function. The regularization
term ||x||TV is the total variation norm and β is its strength.
The total-variation norm has been used for reconstruction
from incomplete data [25, 28]. We use it to reward sparsity.
The artifact reduction is mainly achieved by the weights and
constraint, not regularization. W is a matrix of weights:

W = diag(w(i)) = exp(−λ
V∑

j=1

aijI1(j)), (3)

where V is the number of voxels, and λ is an experimentally
determined constant, set to 0.2. In Eqn. (3), I1 is an indicator
function:

I1(j) =

{
1 x(j) > M1

0 otherwise. (4)

The threshold M1 is set to 4000 modified Hounsfield units
(MHU). A voxel above this threshold is interpreted to contain
metal or be close to metal. In the MHU scale, water is 1000
MHU and air is zero.

Now we discuss the constraint in Eqn. (2). The symbol
� denotes a vector inequality. This constraint is motivated
by the knowledge that the low-frequency metal artifacts are
due to beam hardening and scattered radiation. Both work in
the same direction: the measured attenuation is lower than the
ideal (monoenergetic-equivalent) attenuation. IP is a diago-
nal matrix containing a second indicator function for metal.

IP = diag(p(i)) =

 1

V∑
j=1

aijI2(j) > 0

0 otherwise

(5)

and

I2(j) =

{
1 x(j) > M2

0 otherwise, (6)

where M2 is set to 10000 MHU. We have used two different
metal thresholds. For weighting, M1 = 4000 MHU, and for
the constraint M2 = 10000 MHU. This is because we apply
the constraint only for high atomic number metals such as
copper or iron, for which more beam hardening is expected.

2.2. Practical Implementation

An FBP reconstruction of the scanner sinogram is called the
original image, XOrig. We identify metal objects in the orig-
inal image by region growing.

The prior-image should represent the attenuation of ob-
jects dense enough to cause secondary artifacts, such as water
and plastics. The convex problem is too large to solve di-
rectly. We decrease the size of the problem by solving for a
miniature image. The miniature image is reduced by four in
each dimension. We low-pass filter and downsample projec-
tions by factors of four in views and samples. This reduces
reconstruction time by a factor of 163.

The construction of the prior-image is illustrated in Fig. 1.
We forward project the metal voxels and calculate the weights
with Eqn. (3). Eqn. (2) is solved using the Mosek software
(Mosek ApS, Denmark) [29]. Let the optimal solution be
denoted Xmini

C . Xmini
C can be upsampled to the same size

as XOrig, and used as the prior-image, but we do not do so
because although larger structures are preserved, small struc-
tures are degraded. Instead, we reconstruct a second image:

Xmini
LS = min

x
(Ax− b)T (Ax− b) + β2||x||TV . (7)

In Eqn. (7), there are no weights or constraints and β2 = 0.1β.
The difference between Xmini

C and Xmini
LS gives an image

consisting mainly of artifacts, Xmini
A :

Xmini
A = Xmini

LS −Xmini
C . (8)

We upsample Xmini
A using bicubic interpolation to get a full-

size artifact image XA. Artifacts are removed from XOrig by
subtracting XA to give X

′

Prior (not shown in Figure 1).

X
′

Prior = XOrig −XA. (9)

We copy the segmented metal voxels from XOrig to X
′

Prior,
which gives us more accurate metal traces. Lastly, we clip
small CT values (< 500 MHU) to zero to remove small resid-
ual artifacts in low density material, and obtain XPrior.

We forward project the prior-image, and use the reprojec-
tions to guide the replacement of metal trace data in the scan-
ner sinogram following a previously published method [7].
The corrected sinogram is reconstructed with FBP.
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Fig. 1. Pictorial representation of the construction of the prior-image. The flow starts with the scanner sinogram. The optimal
solutions to Eqns. (2) and (7) are shown in the smaller images (not to scale).

3. RESULTS

Our data set was supplied by the ALERT group at Northeast-
ern University [30]. Bags were scanned on a medical scanner
(Imatron, San Francisco, California) with a tube peak voltage
of 130 kV in an axial half-scan mode. The slice thickness is
1.5 mm, the field of view is 475 mm, and image size is 5122.
There were 864 views / scan, and 888 samples / view.

Fig. 2 shows pairs of original and MAR images. Bright
and dark metal artifacts are nearly eliminated. The original
images contain artifact amplitudes of a few hundred MHU,
which could result in objects wrongly being split or merged
by automatic target recognition. The artifacts are nearly elim-
inated while the structures are preserved, because the prior-
image included most of the structures but not the artifacts.

Although there is an overall improvement with MAR,
our algorithm has limitations. In image regions close to the
metal, some artifacts remain because relevant projections are
de-emphasized. There may also be a loss of resolution along
the streaks, which is common to most MAR algorithms [31].
During data replacement, interpolation across metal traces
blurs edges along the rays unless they were perfectly cap-
tured in the prior-image. Edges from relatively less dense
materials may not be preserved in the prior-image.

We compare our method against the iterative projection
replacement method (IPR) [13]. We chose this benchmark
because of its good results on medical images, and because
it makes no application-specific assumptions. We computed
IPR prior-images of the same size as ours. This made it pos-
sible to reconstruct the images on our 16-processor GPU with

96 GB RAM using the same solver, NESTA, [32] and opti-
mization problem definition. While the authors do not spec-
ify image sizes in [13], they state that resolution matching is
not required. An IPR image is shown in Figure 3. Objects
appear blurred together because too much sinogram data has
been discarded. We also compare with the most commonly
used benchmark in MAR literature [5], also shown in Fig-
ure 3. This image has secondary artifacts and loss of detail.

4. CONCLUSIONS

We have developed a new metal artifact reduction method for
luggage screening. Results show significant artifact reduc-
tion. Our contributions are in three areas. 1. We have a new
formulation of an optimization problem, including projection
weighting and a constraint for beam hardening and scatter.
Details and contrast are better preserved with our weighting
and constraints. 2. We express our problem as the difference
of solutions to two optimization problems, which removes the
effects of mismatched spatial resolution from FBP and opti-
mal solutions, and isolates artifacts. 3. Miniaturization allows
us to directly solve the optimization problems.
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Fig. 2. Example results from our method. The left column shows original images, and the right column shows images with
MAR. The arrows point out some artifacts. Window width (WW) = 2500, window-level (WL)=750 MHU. In Bag 1, streaks
are present in the original image but reduced in the MAR image. In Bag 2, the object with fine detail on the right hand side of
the suitcase appears split, but is restored after MAR. Bag 3 has a large amount of metal inside a boom-box and outside, and a
uniform object at the top of the bag. The dark shading in the original image is reduced in the MAR image.

Fig. 3. Images reconstructed with other MAR algorithms. The left image was reconstructed by optimization discarding metal
data [13] and the right image had sinogram interpolation without a prior [5]. These images show a loss of detail compared to
the MAR images in Figure 2.
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