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Abstract—We propose an opportunistic scheduling method to
achieve DoF (degrees of freedom) gain by BIA (blind interference
alignment) in block fading K-user 2×1 MISO broadcast channel.
The optimal scheduling method is obtained by solving a general
model of linear integer program. All the users are divided into
user pairs to form a 2-user 2×1 BIA. Each pair has the same
opportunity to be scheduled. When K ≥ 10, the expectation of
the achieved DoF can be very close to 4

3
.

Index Terms—blind interference alignment, DoF, block fading,
opportunistic.

I. INTRODUCTION

INTERFERENCE alignment as a new method to improve

the system capacity of interference networks has shown

remarkable benefits [1]. However, the improvement of DoF

often depends on perfect CSIT (channel state information

at the transmitters), which is quite impractical for wireless

communication. Thus BIA with no CSIT is studied in [2],

[3]. They show that with no CSIT, a total DoF of M×K
M+K−1

(the M ×K X channel setting), which is also the DoF outer

bound even with perfect and global channel knowledge, can

be achieved by exploiting staggered channel correlations. With

the help of reconfigurable antenna modes at the receiver,

staggered channel correlations required for BIA is easy to

implement [4]. On this basis, Wang et al give the beamforming

vectors for the 2 × K X channel setting, which reaches the

outer bound.

The results above are inspiring but also reveal that the time

accuracy of controlling the reconfigurable antenna modes is

quite high for wireless communication. The feasibility of BIA

in block fading 2×1 MISO broadcast channels for 2 user and

3 user is researched in [5] and [6], respectively. It’s proved that

there is a high probability to find 2 or 3 out of the K users to

realize BIA only taking advantage of the channel correlations.

Though a sufficient condition to achieve the DoF bound by

using BIA is given, when the condition is not satisfied, the

optimal DoF cannot be achieved because not all the channel

resources are used to perform BIA. But appropriate scheduling
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mechanisms to group as many channel resources as possible

for BIA will still get DoF benefit.

Inspired by these contributions, we propose an opportunistic

scheduling method to group channel resource and users to

approximately achieve 4
3 DoF for the system of block fading

2×1 MISO broadcast channel with K users. A general linear

integer program model is given, and the analytical solution

is derived. A linear Diophantine equations model is proposed

in [7] most recently, which gives the sufficient and necessary

condition for the situation where complete BIA is possible. By

complete BIA, we mean that all the channel resources are used

for BIA. It is just a special case when the inequality constraints

in our model satisfy the equal condition, and the solution in

[7] is a vertex of the solution space in our model. Conclusions

in [5], [6] and [7] show that there is high probability to get

2 or 3 users grouped for complete BIA. Obviously, the DoF

bound for 2-user or 3-user 2×1 BIA can be achieved by only

allocating resource for complete BIA users at the cost of losing

fairness among users, which is not practical. Instead, all the

users are classified into pairs to form a 2-user BIA in our

scheduling method. The user pairs which don’t satisfy the

complete BIA condition, that is the inequality situation, can

approach the 4
3 DoF as much as possible. And the achieved

DOF expectation of the K-user is very close to 4
3 as K

increases.

Throughout the paper, we will use A and a to denote a

matrix and a vector, respectively. Let AT and rank(A) denote

the transpose and the rank of A. N(A) denotes the null space

of A.

II. SYSTEM MODEL AND ASSUMPTIONS

We first consider the setting of 2-user 2×1 MISO broad-

cast channel, where the transmitter has 2 antennas and each

receiver has a single antenna. Block fading channel means

the channel remains constant during the coherence time but

changes randomly across its coherence interval. The assump-

tions and conclusions in [4] are quoted here for the conve-

nience to introduce our scheduling model.

BIA is achieved by coding over only a finite number of

symbols. If channel resources can be found to construct a

supersymbol shown in Fig.1, the outer bound of DoF for

BIA can be achieved by using the beamforming vector given

in [4]. Fig.1 shows the block fading channel that the two

users experience during the transmitting. That the channel

remains constant during the coherence time is indicated by

the rectangles with the same linetype. The supersymbol which
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Fig. 1. Supersymbol for BIA of a 2-user 2×1 MISO channel

is outlined with arrows consists of 3 CREs (channel resource

elements). Channel remains the same in the first 2 symbols for

user 2, but changes for user 1. The situation exchanges when

it comes to the last 2 symbols. The transmitted signal for BIA

is

X =

⎡
⎣ I

I
0

⎤
⎦
[

u
[1]
1

u
[1]
2

]
+

⎡
⎣ 0

I
I

⎤
⎦
[

u
[2]
1

u
[2]
2

]
(1)

where I is a 2×2 identity matrix. u1
[i] and u2

[i] are two

independently encoded data streams intended to user i. The

received signal at user 1 is⎡
⎣ y[1] (1)

y[1] (2)
y[1] (3)

⎤
⎦ =

⎡
⎣ h[1] (1)
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2
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+

⎡
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⎦
[

u
[2]
1
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2

]

(2)
where h[i] (n) is a 1×2 channel vector standing for the channel

between two transmit antennas and user i; 0 is a 1×2 zero

vector; y[i] (n) is the receiving signal of user i at timeslot n;

The interference signal is aligned into one dimension along

vector [0 1 1]T , while the desired signal of user 1 occupies

2 other dimensions. The beamforming vector is also given

in (1). So if the CREs constructing the supersymbol are

found, BIA can be fulfilled using the method in [4]. The only

problem is how to get as many CREs as possible grouped for

constructing supersymbols in block fading channel without the

help of the reconfigurable antenna at the receiver. This is a

question of channel resource scheduling for BIA and it can be

implemented in both user layer and CREs layer.

The 2 users are assumed to have the same coherence time

N but different initial time offset τ . Without loss of generality,

the initial time offsets of user 1 and user 2 are indicated as

τ [0] = 0 and τ [1] ≥ 0 respectively. Next, we will reanalyse

the construction of the supersymbol and find out what kind of

CREs are needed.

As shown in Fig.1, the supersymbol for 2-user 2×1 MISO

channel includes 3 symbols. The central symbol can be chosen

from the intersecting part of a coherence block of either user

and then both the left, right symbol can be chosen from the

other part of the two coherence blocks. The intersecting part

of the slashes coherence block of user 1 and the backslashes

coherence block of user 2, which is marked as subblock 2, can

be used for central symbol. The left symbol and right symbol

can be chosen from subblock 1 and subblock 3 respectively.

The channel resource staying constant for both users is defined

as a subblock. All the CREs in a single subblock are equivalent

in consisting of supersymbol. Fig.2 shows the subblock divi-

sion of two users with relative time offset τ [1] and coherence

time N . Each subblock is the intersecting part of a coherence

User2
User1
Subblock

1n 1N n

1S0S 2S 3S 4S 5S 6S 7S 8S

Fig. 2. Subblock segmentation for a 2-user 2×1 MISO channel

block of either user, which means CREs in each subblock

can be used as a central symbol. It’s also obvious that there

is one and only one possible combination for a subblock to

construct the supersymbol as the central symbol. Considering

about the coherence time and that supersymbol consisting

of 3 symbols, 3N is a period for analysis. Because of the

periodicity, (S5, S0, S1) and (S4, S5, S0) denote combinations

where subblock S0 and S5 are central symbols. ci denotes the

number of the combination where Si is the central symbol.

All the possible combinations in the 3N CREs are shown in

(3). The corresponding length of subblock Si is li, and N is

the set of nonnegative integers. Our destination is to find a

scheduling method or a combination method to use as many

CREs as possible, that is constructing supersymbols to fulfill

BIA. So the solution of (3) is the optimal scheduling method

for the two users to get the maximum DoF by BIA.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize(c0 + c1 + c2 + c3 + c4 + c5)
subject to :
c0(S5, S0, S1) : c5 + c0 + c1 ≤ l0
c1(S0, S1, S2) : c0 + c1 + c2 ≤ l1
c2(S1, S2, S3) : c1 + c2 + c3 ≤ l2
c3(S2, S3, S4) : c2 + c3 + c4 ≤ l3
c4(S3, S4, S5) : c3 + c4 + c5 ≤ l4
c5(S4, S5, S0) : c4 + c5 + c0 ≤ l5
c0, c1, c2, c3, c4, c5 ∈ N

(3)

III. ANALYTICAL SOLUTION

Usually there is no analytical solution for a linear integer

program problem. But (3) has rather regular constraint con-

ditions and there is special nature for li as well, which is

l0 = l2i = τ [1], l1 = l2i+1 = N − τ [1], i = 0, 1, 2.... So (3)

can be rewritten in matrix form as (4).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize(c0 + c1 + c2 + c3 + c4 + c5)
subject to :Ac ≤ b, ci ∈ N, i = 0, 1, 2...5

A=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
,b =

⎡
⎢⎢⎢⎢⎢⎢⎣

l0
l1
l0
l1
l0
l1

⎤
⎥⎥⎥⎥⎥⎥⎦
, c =

⎡
⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
c3
c4
c5

⎤
⎥⎥⎥⎥⎥⎥⎦
(4)

It is well known that the optimal solution of a linear program

problem usually lies in the border of the feasible region. For

the problem of (4), leaving alone the integer constraints, the

maximum value N is achieved when the inequality constraints

become equal, which means all the CREs of every subblock

are used in a combination. Next, the linear integer program

problem is solved by proving 2 theorems. Firstly, a lemma is

present.
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Lemma 1. There are always solutions for the objective
function to get the maximum value N in integer field.

Proof: The reduced row echelon form of the augmented

matrix as (5a) is obtained with elementary row transformation.⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 l1
0 1 0 0 − 1 0 l0 − l1
0 0 1 0 0 − 1 l1 − l0
0 0 0 1 1 1 l0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
(5a)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c0 = l1 − λ0 − λ1

c1 = l0 − l1 + λ0

c2 = l1 − l0 + λ1

c3 = l0 − λ0 − λ1

c4 = λ0

c4 = λ1

(5b)

From (5a), we know rank(A) = 4, rank(N(A)) = 2. So

the solution space has 2 dimensions and (5b) is the solution

set. Because l0 and l1 are integers, (c0, c1, c2, c3, c4, c5) is an

integer solution if and only if λ0 and λ1 are integers. That

is to say, the integer solutions are the integer points of a two

dimensional plane of (λ0, λ1).

Theorem 1. When l0 + l1 ≤ 3min(l0, l1), there are always
solutions for the objective function to get the maximum value
N in non-negative integer field.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ0 + λ1 ≤ l1
λ0 ≥ l1 − l0
λ1 ≥ l0 − l1
λ0 + λ1 ≤ l0

λ0 ≥ 0
λ1 ≥ 0

(6a)

⎧⎨
⎩

λ0 + λ1 ≤ l0
λ0 ≥ l1 − l0
λ1 ≥ 0

(6b)

Proof: Apparently, the solutions of (5b) which meet the

non-negative demand are the optimal solutions. Substituting

(5b) in c � 0 we get (6a). Since l0 and l1 are integers, there

are integer points on the border of the solution space as long as

the solution space of (6a) is non-empty. For the case l1 ≥ l0,

(6a) equals to (6b), and the sufficient and necessary condition

for the existence of the optimal solution is l1 − l0 + 0 ≤
λ0 + λ1 ≤ l0, equivalent to l0 + l1 ≤ 3l0. Considering about

the symmetry of l0 and l1 in (6a), we can get the similar

result for the case l1 < l0, which is l0 + l1 ≤ 3l1. So the

sufficient and necessary condition is l0 + l1 ≤ 3min(l0, l1)
for both cases. Fig.3 shows the solutions for the case l1 ≥ l0.

Each of the integer points in the triangle shadow, such as the

three vertices, is a solution for (4) to reach the maximum

value N . When (λ0, λ1) = (l1 − l0, 2l0 − l1), just the triangle

point in Fig.3, c = (l1 − l0, 0, l0, 0, l1 − l0, 2l0 − l1) is the

corresponding solution given in [5]. The three vertices of the

feasible region are special solutions because even while l0 +
l1=3min(l0, l1), all the other integer solutions disappear, these

three solutions still exist, although they converge to be one

point. With l0 = τ [1], l1 = N − τ [1], an equivalent condition

is
⌈
N
3

⌉ ≤ τ [1] ≤ ⌊
2N
3

⌋
.

Theorem 2. When l0+ l1 > 3min(l0, l1), there is no solution
for the objective function to get the maximum value N in
non-negative integer field. The maximum value is 3min(l0, l1)
and the corresponding solution set can be achieved by letting
l′1 = 2min(l0, l1), and l′0 = min(l0, l1), then using theorem
1 to (l′0, l

′
1).

Proof: Considering about the symmetry of l0 and l1 in

(4), without loss of generality, suppose max(l0, l1)=l1 and

0

1
0l

0l

1l

1l

1 0l l

00 1l l

Fig. 3. Solution space of (4)

l1 > 2l0, which is equivalent to l0 + l1 > 3min(l0, l1). Let

l1 = l1
′ +Δ, l1

′ = 2l0, then l0 + l1
′ = 3min(l0, l1

′) satisfies

the condition in theorem 1. c′ = (l0, 0, l0, 0, l0, 0) is the only

solution for the objective function to get the optimal value.

From (4), we get c0 + c1 ≤ c5 + c0 + c1 ≤ l0 and c1 +
c2 ≤ c1 + c2 + c3 ≤ l0. Adding the two inequalities, we

get c0 + c1 + c2 ≤ c0 + 2c1 + c2 ≤ 2l0, which means at

most 2l0 elements of the subblock S1 can be used for BIA.

The solution c′ has reached the upper bound and the situation

is the same with S3, S5. For the subblocks with the length

of l0, all the elements are used in the solution c′. So c′ is

the solution for the objective function to reach the maximum

value 3min(l0, l1). It’s referred as patial BIA because not all

the CREs are used in BIA. The proof is similar for the case

max(l0, l1)=l0.

IV. SCHEDULING METHOD AND FEASIBILITY PROOF

The analytical solution of (4) is given in the two theorems

above for different cases. It shows how to use as many CREs

as possible to perform BIA for certain two users thus getting

DoF gain. The opportunistic scheduling method based on the

solution includes two steps. Firstly, user pairs which meet

the demand in theorem 1 is found to get complete BIA and

achieve the 4/3 DoF. And for the left users which satisfy the

case of theorem 2, patial BIA is done. Secondly, round-robin

scheduling among the user pairs can be fulfilled. Next, the

feasibility of the opportunistic scheduling method is proved

and the achieved DoF expectation is derived with 2 lemmas.

inf(E(P(N,K))) =
2

K

∑�K/2�−1

i=0

∏K

j=K−2i
P(N,j) (7)

Lemma 2. The lower bound of the percentage expectation for
the users which satisfy the condition of theorem 1 among K
users is (7). When K is even, K ≥ 2, j = 0, 2, 4...K, and
when K is odd, K ≥ 3, j = 1, 3, 5...K.

Proof: [5] has proven that for a K-user 2×1

broadcast channel with coherence time N , the

probability that the transmitter can find two users to

fulfill complete BIA is P(N,K) = 1 − f(N,K), where

f(N,K) =
3Θ(�N

3 	,K−2)−2Θ(�N
3 	,K−3)

NK−1 with Θ(a, b) =
a∑

i=1

ib,

K ≥ 3. When K = 2, P(N,2) = 1/3. Suppose that there

is a global optimum paring method, which we don’t know.
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Fig. 4. Percentage expectation of complete BIA users.

It can find maximum user pairs for arbitrary definite user

distributions. Let P(N,K,n) denote the probability that there

are at most n pairs can be chosen with the optimum

paring method. So P(N,K,0) is for the case when no pair

of users satisfy the demand and P(N,K) = 1 − P(N,K,0) =
P(N,K,1) + P(N,K,2) + ... + P(N,K,�K/2�). Firstly, all the

combinations of two users will be tested one by one until a pair

can be chosen to form a 2 user 2×1 BIA, and the probability

is P(N,K). Secondly, all the combinations of two users among

the left users will be tested until the second pair is chosen, and

the probability is P(N,K)P(N,K−2), and so on. The method

is not global optimum, because the previous pair is chosen

without considering the influence on the following pair. The

probability that the second user pair can be chosen with

the unknown global optimum paring method is P(N,K,2) +
P(N,K,3) + ... + P(N,K,�K/2�). So P(N,K)P(N,K−2) ≤
P(N,K,2) + P(N,K,3) + ... + P(N,K,�K/2�). There are

⌊
K
2

⌋
pairs for K users, so 2

KP(N,K) + 2
KP(N,K)P(N,K−2) +

... + 2
KP(N,K)P(N,K−2)P(N,K−4)...P(N,4)P(N,2) ≤

2
K ((P(N,K,1)+...+P(N,K,�K/2�)) + (P(N,K,2) +
...P(N,K,�K/2�)) + (P(N,K,3) + ...P(N,K,�K/2�)) + ... +
(P(N,K,�K/2�))) = 1

K (2P(N,K,1) + 4P(N,K,2) + ... +
2 �K/2� (P(N,K,�K/2�))) = E(P(N,K)), which can be

abbreviated to (7).

Fig.4 shows that the percentage expectation of the users

satisfying theorem 1 increases with the total user number K.

When K is larger than 30, almost more than 95% users can

form a complete BIA user pair, which means round-robin

scheduling among the user pairs to approach the optimal DoF

is possible.

Lemma 3. For the user pairs satisfying theorem 2, the
achieved DoF expectation is 1 + PN/3, where PN =

6

N�2N/3	
∑�N/3	−1

i=0 i.

Proof: When τ [1] doesn’t meet the demand
⌈
N
3

⌉ ≤ τ [1] ≤⌊
2N
3

⌋
, there are

⌈
2N
3

⌉
possibilities with the same probability.

The corresponding min(l0, l1) is 0, 1, 2...
⌈
N
3

⌉ − 1, and each

min(l0, l1) has two probabilities. So the proportion of the BIA

channel resources is 1

�2N/3	
2
N

∑�N/3	−1

i=0 3i, which equals to

PN . Considering that the resource left can achieve DoF 1, the

achieved DoF expectation is 4
3PN +(1−PN ) = 1+ 1

3PN .

Based on the results above, we get the expectation of
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Fig. 5. Expectation of the achieved DoF with respect to total user nember.

the achieved DoF for a K-user 2×1 broadcast channel with

coherence time N using 2 user 2×1 BIA. The expectation of

the achieved DoF is

4

3
inf(E(P(N,K))) + (1− inf(E(P(N,K))))(1 +

1

3
PN ) (8)

Fig.5 shows that expectation of the achieved DoF increases

with the user number K up to the upper DoF bound of 2-user

2×1 BIA. When K ≥ 10, it is almost certain that the achieved

DoF can be close to the optimal 4/3 DoF of 2-user BIA in a

setting K-user 2×1 broadcast channel. The scheduling method

is firstly finding user pairs satisfying the condition in theorem

1, and the left user pairs can be dealt with theorem 2.

V. CONCLUSIONS

We propose an opportunistic scheduling method to achieve

DoF gain by grouping CREs and users to form a 2-user

2×1 BIA in the setting of K-user 2×1 broadcast channel.

The feasibility of our optimistic scheduling method found

according to the analytical solution of a linear integer program

problem is proved. All the users can form a 2-user 2×1

complete or patial BIA pair. With all the user pairs round-robin

scheduled, each user has the same opportunity for transmitting.

The achieved DoF expectation using our scheduling method

is given, which shows that when K ≥ 10, it can be very close

to 4/3 in a setting K-user 2×1 broadcast channel.
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