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ABSTRACT

In this paper, we study the degrees of freedom (DoF) of partially-
connected symmetrically-configured multi-input-multi-output inter-
ference broadcast channel (MIMO-IBC) and the impact of partial
connectivity on the DoF. We investigate the information theoretic
maximal DoF and maximal DoF achieved by linear interference
alignment (IA) for the symmetrically-connected symmetrically-
configured MIMO-IBC, and prove that the DoF are achievable
by asymptotic IA and linear IA for the asymmetrically-connected
symmetrically-configured network when the maximal number of in-
terfering cells seen at each BS and each user (denoted as the degrees
of connectivity) is bounded. We find that for the symmetrically-
connected symmetrically-configured MIMO-IBC, the maximal
achievable DoF are independent of the number of total cells but
depend on the degrees of connectivity. When the degrees of connec-
tivity decrease, the maximal DoF achieved by linear IA are close to
the information theoretic maximal DoF.

Index Terms— Interference alignment (IA), degrees of freedom
(DoF), partially-connected, symmetrically-configured

1. INTRODUCTION

The degrees of freedom (DoF) can reflect the potential of interfer-
ence networks, which are the first-order approximation of sum ca-
pacity in high signal-to-noise ratio regime [1, 2]. Recently, signifi-
cant research efforts have been devoted to find the information the-
oretic maximal DoF for the multi-input-multi-output (MIMO) in-
terference channel (MIMO-IC) [1–5] and the MIMO interference
broadcast channel (MIMO-IBC) [6–8].

For the fully-connected symmetrically-configured G-cell MIMO-
IC where each base station (BS) and each mobile station (MS) have
M antennas, the study in [3] showed that the information theoretic
maximal DoF per user are M/2, which can be achieved by asymp-
totic interference alignment (IA) (i.e., with infinite time/frequency
extension). It implies that the sum DoF can increase linearly with
the number of cells G, and the interference networks are not
interference-limited [3]. Encouraged by such a promising result,
many recent works strive to analyze the DoF for the MIMO-IC
and the MIMO-IBC with various settings and devise interference
management techniques to achieve the maximal DoF.

So far, the DoF for the fully-connected MIMO-IC or MIMO-
IBC have been well studied. For the three-cell symmetrically-
configured MIMO-IBC, the information theoretic maximal DoF
were obtained in [1], which can be achieved by linear IA (i.e.,

This work was supported by the National Natural Science Foundation
of China (Grant No. 61128002 and 61301085), Beijing Excellent Doctoral
Dissertation Foundation (Grant No. 20121000601) and China Postdoctoral
Science Foundation (Grant No. 2013T60051).

without any symbol extension or only with finite spatial exten-
sion) [4]. By constructing a wise genie chain, the information theo-
retic maximal DoF for the G-cell symmetrically- or asymmetrically-
configured MIMO-IBC were investigated in [7,8]. The results show
that only the sum DoF achieved by asymptotic IA can increase lin-
early with G, while the sum DoF achieved by linear IA are limited
by the sum of numbers of transmit and receive antennas.

In fact, such a pessimistic result comes from the full connectiv-
ity assumption, which implicitly treats all channel coefficients of all
interfering links as equally strong [9]. In practical cellular systems,
the natural attenuation effects (e.g., propagation path loss, shadow-
ing, and fading) cause the (at least partial) loss of connectivity of
interfering links [11]. The partial connectivity may reduce the ag-
gregated interference and provide throughput gains for interference-
limited systems [12]. Therefore, many studies devoted to investigate
the DoF and design the IA transceivers for the partially-connected
MIMO-IC [10] and the MIMO-IBC [11–13].

Partially-connected MIMO-IBC systems are more complex
than fully-connected MIMO-IBC systems, since it is necessary
to consider whether the antenna configuration is symmetric or
not and whether the connectivity is symmetric or not. For the
asymmetrically-connected asymmetrically-configured MIMO-IBC,
the authors in [12] only analyzed the DoF achieved by the giv-
en IA algorithm. However, what is the optimal IA and what are
information theoretic maximal DoF are still unknown. For the
symmetrically-connected symmetrically-configured MIMO-IBC,
the authors in [11] derived the proper condition, which was proved
to be a necessary condition for linear IA feasibility. However, when
the proper condition is sufficient and what are the maximal DoF
achieved by linear IA remain unclear.

In this paper, we consider the partially-connected symmetrically-
configured MIMO-IBC. We strive to find the information theoretic
maximal DoF and maximal DoF achieved by linear IA for the
MIMO-IBC with symmetrical connectivity and the achievable DoF
of asymptotic IA and linear IA for the MIMO-IBC with asymmetric
connectivity. From the DoF results, we reveal the impact of partial
connectivity on the DoF and show when the linear IA can achieve
the information theoretic maximal DoF.

2. SYSTEM MODEL
Consider a G-cell downlink multiuser MIMO cellular system, where
each BS with M antennas serves K users and each user with N an-
tennas receives d data steams. Assume that there are no data sharing
among the BSs and every BS has perfect channel side information
(CSI) of all links. This is a scenario of symmetrically-configured
MIMO-IBC, denoted as

(
M × (N, d)K

)G
.

Consider the MIMO-IBC whose interfering links (i.e., cross
links) are partially-connected. We use the connection pattern pro-
posed in [8] to describe the connectivity of interfering links. Con-
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nection pattern is a graph that represents which BSs and users are
mutually interfering each other. Each connection pattern corre-
sponds to a set of BS-MS pairs, called connection set [8], i.e.,

J � {(ik, j)|∀BSj is connected with MSik} (1)

where BSj and MSik denote the BS in cell j and the kth user in cell
i, respectively.

From J we can obtain another two sets to describe the connec-
tivity of each BS and user:

Jj � {ik| (ik, j) ∈ J } is the set of MSs connected with BSj

Jik � {j| (ik, j) ∈ J } is the set of BSs connected with MSik

Therefore, |Jj | is the number of interfering users for BSj , while
|Jik | is the number of interfering BSs for MSik , where | · | denotes
the cardinality operator.

In this study, we consider a model of the partially-connected
MIMO-IBC in [11], the L-interfering MIMO-IBC.

Definition 1. If a partially-connected symmetrically-configured
MIMO-IBC whose connection pattern satisfies

Ji1 = · · · = JiK (2a)
|Jj |/K ≤ L, |Jik | ≤ L, ∀i, j, k (2b)

it is called L-interfering MIMO-IBC, where L is an integer satisfy-
ing 1 ≤ L ≤ G− 1.

(2a) means that all users in one cell have the same connectivity.
Then, |Jj |/K and |Jik | denote the number of interfering cells seen
at BSj and MSik , respectively. Therefore, (2b) indicates that the
number of interfering cells seen at each BS and each user is no more
than L. Since L denotes the maximal number of interfering cells
seen at each BS and each user, it is called degrees of connectivity in
the sequel.

For MSik , the received signal can be expressed as

yyyik =HHHik,ixxxik +
∑
l �=k

HHHik,ixxxil +
∑

j∈Jik

HHHik,jxxxj +nnnik (3)

where xxxik ∈ C
M×1 is the signal vector transmitted from BSi to

MSik , xxxj =
∑K

k=1 xxxjk is the signal vector transmitted from BSj to
its desired users, HHHik,j ∈ C

N×M is the channel matrix from BSj to
MSik whose elements are i.i.d. random variables with a continuous
distribution, and nnnik ∈ C

N×1 is the noise vector.
The received signal of each user contains the multiuser interfer-

ence (MUI) from its desired BS and the inter-cell interference (ICI)
from its interfering BSs, which are the second and third terms in (3).

Because both the IA with and without symbol extension will be
addressed, we define several terminologies to be used. Linear IA
is the IA without any symbol extension or only with finite spatial
extension. Asymptotic IA is the IA with infinite time or frequency
extension [1]. With the spatial, time or frequency extension, the DoF
are not necessary to be an integer.

3. DOF ANALYSIS
In this section, we first derive the DoF achieved by both linear IA
and asymptotic IA for the L-interfering MIMO-IBC and then show
the impact of the connectivity on the achievable DoF.

3.1. Doubly-symmetric L-interfering MIMO-IBC
From Definition 1, we know that the connectivity of L-interfering
MIMO-IBC is not always symmetric. The analysis in [8] indicates

that when the connectivity is asymmetric, BSs or users in different
cells will see different numbers of ICIs so that the IA feasible con-
ditions are rather involved for analysis. To simplify the analysis, a
special class of L-interfering MIMO-IBC was considered in [11],
where both the antenna configuration and the connectivity are sym-
metric. We call it doubly-symmetric L-interfering MIMO-IBC.

Definition 2. If a L-interfering MIMO-IBC whose connection pat-
tern satisfies

|Jj |/K = |Jik | = L, ∀i, j, k (4)

it is called doubly-symmetric L-interfering MIMO-IBC.

When L = G− 1, the doubly-symmetric L-interfering MIMO-
IBC reduces to the fully-connected symmetrically-configured MIMO-
IBC.

In Fig. 1, we show an example of connection pattern for the
doubly-symmetric L-interfering MIMO-IBC, where the solid lines
represent the interfering channels with non-zero coefficients, and the
desired links are not shown. Each BS (or user) is connected with
the users (or BSs) in the two interfering cells, hence the degrees of
connectivity are L = 2.

BS1 BS2 BS3 BS4

MS MS MS MS MS MS MS MS11 12 21 22 31 32 41 42

Fig. 1. Example of connection pattern for the doubly-symmetric L-
interfering MIMO-IBC.

The study in [11] proved that a L-interfering MIMO-IBC that
satisfies the proper condition for the doubly-symmetric L-interfering
MIMO-IBC must to be proper. However, the relationship between
“proper” and “feasible” is not clear, so that it is still unknown
whether the derived proper condition is necessary or sufficient for
linear IA feasibility in the L-interfering MIMO-IBC. To answer this
question and derive the achievable DoF for the L-interfering MIMO-
IBC, we introduce a lemma to show the relationship between the IA
feasible conditions of the L-interfering MIMO-IBC and that of the
doubly-symmetric L-interfering MIMO-IBC.

Lemma 1. For two MIMO-IBC systems with the same antenna con-
figuration and different connection patterns (denoted as J α and
J β), if their antenna configurations are asymmetric and their con-
nection patterns satisfy

J α ⊆ J β (5)

or if their antenna configurations are symmetric and their connec-
tion patterns satisfy

|J α
ik | ≤ |J β

ik
|, |J α

j | ≤ |J β
j |, ∀i, j, k (6)

we have

1. the necessary condition of IA feasibility for the MIMO-IBC
with J α is always necessary for that with J β ,

2. the sufficient condition of IA feasibility for the MIMO-IBC
with J β is always sufficient for that with J α.

The proof of this lemma can be obtained from the DoF anal-
ysis for the fully-connected asymmetrically-configured MIMO-IBC
in [8].
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Remark 1. Since the connection set for the partial connectivity is
always a subset of that for the full connectivity, and the symmetric
antenna configuration is a special case of the asymmetric anten-
na configuration, the necessary conditions of IA feasibility for the
asymmetrically-connected asymmetrically-configured MIMO-IBC
can be obtained from that for the fully-connected asymmetrically-
configured MIMO-IBC in [8]. From the necessary conditions, we
can obtain the outer-bound of DoF region for the asymmetrically-
connected asymmetrically-configured MIMO-IBC.

For the asymmetrically-connected asymmetrically-configured
MIMO-IBC, it is not hard to derive the DoF outer-bound but diffi-
cult to prove whether the DoF outer-bound is achievable or not. It is
the reason why we consider the doubly-symmetric MIMO-IBC.

Remark 2. Comparing (2b) and (4), we know that for each B-
S or user, the number of interfering cells for the L-interfering
MIMO-IBC is always no more than that for the doubly-symmetric
L-interfering MIMO-IBC. As a result, the achievable DoF for the
doubly-symmetric L-interfering MIMO-IBC are always achievable
for the L-interfering MIMO-IBC. As shown in (2a), we know that all
users in one cell are assumed to have the identical connectivity in
the L-interfering MIMO-IBC. In fact, from Lemma 1 we know that
this assumption is not necessary to draw such a conclusion. In other
words, the achievable DoF for the doubly-symmetric L-interfering
MIMO-IBC are always achievable for the asymmetrically-connected
symmetrically-configured MIMO-IBC when the maximal number of
interfering cells seen at each BS and each user is no more than L.

To derive the achievable DoF for the asymmetrically-connected
symmetrically-configured MIMO-IBC (including L-interfering
MIMO-IBC), we investigate the maximal achievable DoF for the
doubly-symmetric L-interfering MIMO-IBC in the following.

3.2. Maximal Achievable DoF

To understand the potential of the doubly-symmetric L-interfering
MIMO-IBC, we investigate the information theoretic maximal DoF.

Theorem 1. For the doubly-symmetric L-interfering MIMO-IBC
with antenna configuration

(
M × (N, d)K

)G
, the information the-

oretic maximal DoF per user are

dInfo (M,N,K,L) =

{
dDecom(M,N,K), ∀M/N ∈ RI

dQuan(M,N,K,L), ∀M/N ∈ RII

(7)

where
dDecom(M,N,K) � MN

M +KN
(8)

dQuan (M,N,K,L) � (9)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

{
M

K+CA
n (L)

, N

1+ K

CA
n−1

(L)

}
, ∀CA

n (L) ≤ M
N

< CA
n−1(L)

min

{
M

K+CB
n−1(L)

, N

1+ K
CB
n (L)

}
, ∀CB

n−1(L) <
M
N

≤ CB
n (L)

RI �
(
CB

∞(L), CA
∞(L)

)
, ∀K ≥ 4, L = 1 or K ≥ 1, L ≥ 2

RII �
{

(0,∞) , ∀K ≤ 3, L = 1(
0, CB

∞(L)
] ∪ [

CA
∞(L),∞)

, otherwise

CA
n (L) � LK−K/CA

n−1(L) and CB
n (L) � K/(LK−CB

n−1(L)),
CA

0 = ∞, CB
0 = 0,

CA
∞(L) � lim

n→∞
CA

n (L) = (LK +
√

L2K2 − 4K)/2 (10a)

CB
∞(L) � lim

n→∞
CB

n (L) = (LK −
√

L2K2 − 4K)/2 (10b)

∀K ≥ 4, L = 1 or K ≥ 1, L ≥ 2.

In Theorem 1, when L = G − 1, (8) and (9) reduce to the
decomposition DoF bound and the quantity DoF bound for the fully-
connected symmetrically-configured MIMO-IBC in [7]. Therefore,
we also call (8) and (9) decomposition DoF bound and quantity DoF
bound for the doubly-symmetric L-interfering MIMO-IBC.

Due to the lack of space, we only provide the skeleton of proofs
for all theorems.

Proof Skeleton. By constructing the similar genie chain with that
in [7], we can prove that the decomposition DoF bound and quantity
DoF bound are the information theoretic DoF upper-bounds when
M/N ∈ RI and M/N ∈ RII (i.e., M/N falls in Region I and
Region II, respectively). Following similar derivations in [7], we
can show that the decomposition DoF bound can be achieved by
asymptotic IA, while the quantity DoF bound can be achieved by
linear IA. In addition, the closed-form solution of linear IA exists.
Therefore, (7) is information theoretic maximal.

Considering that asymptotic IA is not feasible for practical sys-
tems, this motivates us to find the maximal DoF achieved by linear
IA.

Theorem 2. For the doubly-symmetric L-interfering MIMO-IBC
MIMO-IBC with antenna configuration

(
M × (N, d)K

)G
, the max-

imal DoF per user achieved by linear IA are

dLinear (M,N,K,L) =

{
dProper(M,N,K), ∀M/N ∈ RI

dQuan(M,N,K,L), ∀M/N ∈ RII

(11)

where
dProp (M,N,K,L) � M +N

(L+ 1)K + 1
(12)

Since (12) is one DoF upper-bound obtained from the prop-
er condition for the doubly-symmetric L-interfering MIMO-IBC in
[11], it is called proper DoF bound.

Proof Skeleton. In Theorem 1, we have proved that the decompo-
sition DoF bound and the quantity DoF bound are the information
theoretic DoF upper-bounds in Regions I and II, respectively. The s-
tudy in [11] has shown that the proper DoF bound is the DoF upper-
bound achieved by linear IA in all regions. Following regular but
tedious derivations, we find that the proper DoF bound is lower than
the decomposition DoF bound in Region I, while the quantity DoF
bound is lower than or equal to the proper DoF bound in Region II.
As a result, the proper DoF bound and the quantity DoF bound are
the DoF upper-bounds of linear IA in Regions I and II, respectively.
Moreover, we can prove that there always exists at least one feasible
solution for linear IA to achieve the proper DoF bound in Region I
following a similar proof in [6]. Theorem 1 shows that the linear IA
achieves the quantity DoF bound in Region II. Therefore, (11) is the
maximal DoF per user achieved by linear IA.
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Remark 3. From (7) and (11), the DoF gap between the information
theoretic maximal DoF and the maximal DoF achieved by linear IA
is obtained as

Δd �dInfo (M,N,K,L)− dLinear (M,N,K,L) (13)

=

{ MN
M+KN

− M+N
(L+1)K+1

, ∀M/N ∈ RI

0, ∀M/N ∈ RII

In Region I, the information theoretic maximal DoF (i.e., the decom-
position DoF bound) are independent of L but the maximal DoF
achieved by linear IA (i.e., the proper DoF bound) decrease with
L, so that when L decreases Δd decreases. By contrast, in Region
II, since the linear IA can achieve the information theoretic maxi-
mal DoF, Δd is always equal to zero. Moreover, (10) shows that
CA

∞(L) decreases with L but CB
∞(L) increases with L, so that when

L decreases the range of Region II is expanded. Therefore, as L
decreases, the DoF achieved by linear IA approach the information
theoretic maximal DoF.

Remark 4. No matter asymptotic IA or linear IA, the maximal
achievable DoF only depend on the degrees of connectivity L but do
not depend on the total number of cells G. From the DoF results for
the fully-connected MIMO-IBC in [7], we know that only the sum
DoF achieved by asymptotic IA can increase linearly with G but
that by linear IA cannot. By contrast, for the partially-connected
MIMO-IBC, when L is bounded, the sum DoF achieved by both
asymptotic IA and linear IA can linearly increase with G.

From the above analysis, we know that when L is low, the
linear IA can achieve a nearly information theoretic maximal DoF
with finite symbol extension. As a result, in the partially-connected
MIMO-IBC with the limited degrees of connectivity, the linear IA
can achieve a good trade-off between achievable DoF and length of
symbol extension.

Remark 5. From the DoF results in Theorems 1 and 2, we can ob-
tain the necessary and sufficient condition of IA feasibility for the
doubly-symmetric L-interfering MIMO-IBC, which is also a suffi-
cient condition of IA feasibility for the L-interfering MIMO-IBC.
For example, Theorem 2 indicates that in Region I the proper D-
oF bound is achievable by linear IA for the doubly-symmetric L-
interfering MIMO-IBC, which indicates that the proper condition is
the sufficient condition of linear IA feasibility for the L-interfering
MIMO-IBC. From the sufficient condition, we can know how many
spatial resources are enough to align the interference of partial in-
terfering links.

To understand the DoF results in Theorems 1 and 2, Figs. 2
and 3 show the feasible and infeasible regions of asymptotic IA and
linear IA for the doubly-symmetric L-interfering MIMO-IBC with
different degrees of connectivity L, where the feasible region and
infeasible region are with legend “FR” and “IR”, respectively. From
Lemma 1, we know that the feasible region for the MIMO-IBC with
the degrees of connectivity L = l must be feasible for that with
L = l − 1 and the infeasible region for that with L = l must be
infeasible for that with degrees of connectivity L = l+1, so that the
feasible/infeasible regions for the MIMO-IBC with different L are
overlapping. From the boundary of feasible and infeasible regions,
the maximal achievable DoF for the doubly-symmetric L-interfering
MIMO-IBC are shown, which are also the achievable DoF for the L-
interfering MIMO-IBC.

As shown in the figures, when L decreases, the maximal DoF
achieved by both asymptotic IA and linear IA increase and their DoF

gap decreases. It shows that when L is low, the DoF achieved by
linear IA are close to the information theoretic maximal DoF.

M

N

d

d0

MN=(M+KN)d

FR(L=1,2,3,4)
FR(L=1,2,3) IR(L=4)
FR(L=1,2) IR(L=3,4)
FR(L=1) IR(L=2,3,4)
IR(L=1,2,3,4)

Fig. 2. Feasible and infeasible regions of Asymptotic IA for the
doubly-symmetric L-interfering MIMO-IBC.

MN=(M+KN)d

N

d

M
d0

FR(L=1,2,3,4)
FR(L=1,2,3) IR(L=4)
FR(L=1,2) IR(L=3,4)
FR(L=1) IR(L=2,3,4)
IR(L=1,2,3,4)

Fig. 3. Feasible and infeasible regions of Linear IA for the doubly-
symmetric L-interfering MIMO-IBC.

4. CONCLUSION
In this paper, we investigated the partially-connected symmetrically-
configured MIMO-IBC. We analyzed the information theoretic max-
imal DoF and maximal DoF achieved by linear IA for the doubly-
symmetric L-interfering MIMO-IBC and found that the DoF are in-
dependent of the total number of cells G but depend on the degree of
connectivity L. When L is bounded, the sum DoF achieved by both
asymptotic IA and linear IA can linearly increase with G. When L
is low, the linear IA can achieve a nearly information theoretic max-
imal DoF with finite symbol extension. We proved that the maxi-
mal achievable DoF for the doubly-symmetric L-interfering MIMO-
IBC are also achievable for the L-interfering MIMO-IBC. From the
achievable DoF we know what is the sufficient condition of IA feasi-
bility, e.g., when the proper is sufficient for linear IA, which reflects
how many spatial resources are enough to align the interference in
the partially-connected network.
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