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ABSTRACT

This paper studies the degrees of freedom (DoF) region of the
2 × 2 × 2 interference network, which is comprised of two
sources, two relays and two destinations, each with arbitrary
number of antennas. We prove that with linear transceivers,
the cut-set outer bound can be achieved without any symbol
extensions, except for one specific system setup, which has
one-DoF gap to the cut-set bound. We show that to achieve
the outer-bound, the transceivers include interference avoid-
ance, cancelation, neutralization and alignment, depending on
the antenna configuration.

1. INTRODUCTION

To characterize and explore the potential of interference net-
works, the degrees of freedom (DoF) has been studied exten-
sively, and many novel interference management mechanisms
are proposed, such as interference alignment (IA) [1], inter-
ference neutralization (IN) [2] and interference shaping [3].

In spite of rapid progress on the DoF analysis for single-
hop interference networks, until now little is known for
the maximal DoF and the transceivers achieving the DoF
of multi-hop interference networks, especially when each
node is equipped with multiple antennas [4]-[10]. For multi-
antenna two-hop interference network with multiple sources
and destination each with arbitrary number of antennas, a
DoF upper bound was presented in [11], but the achievability
of the bound was not shown. In [12], a strategy of aligned IN
including IA and IN was proposed for single antenna 2×2×2
interference network, which achieves the cut-set outer bound
of the system almost surely in the asymptotic sense (i.e.,
with infinite symbol extensions). In [13], the DoF region
of 2 × 2 × 2 interference network with arbitrary number of
antennas at each node was proposed, which coincides with
the cut-set outer-bound and can be achieved by beamforming
and the aligned IN. As a result, the outer-bound is achieved
in the asymptotic sense.

In this paper, we study the same 2 × 2 × 2 interference
network with arbitrary antenna configuration as in [13]. We
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prove that the cut-set outer bound of the network can be
achieved without symbol extension except for one specific
setup, for which there is a DoF gap of one to the outer bound.

Notations: For matrix AAA ∈ Cm×n, we denote AAA+ and AAA⊥

as the pseudo inverse and the basis of the null space of AAA,
respectively. When m ≥ n, we have AAA+ ∈ Cn×m, AAA⊥ ∈
C(m−n)×m and AAA+AAA = IIIn, AAA⊥AAA = 000; otherwise, we have
AAA+ ∈ Cn×m, AAA⊥ ∈ Cn×(n−m) and AAAAAA+ = IIIm, AAAAAA⊥ = 000.

2. SYSTEM MODEL AND MAIN RESULT

The 2×2×2 interference network with arbitrary antenna con-
figuration is denoted as ((d1, M1, N1), (d2, M2, N2, ), R1, R2),
where Mi, Ni and Ri are the numbers of antennas at each
source, destination and relay, and di is the number of data
streams transmitted from source i to destination i, i = 1, 2.

Denote VVV i ∈ CMi×di as the transmit matrix at source i,
UUUH

i ∈ C
di×Ni as the receive matrix at destination i, ΓΓΓi ∈

CRi×Ri as the processing matrix at relay i, FFF ij ∈ CRi×Mj

and GGGij ∈ CNi×Rj as the channel matrices from source j to
relay i and from relay j to destination i, respectively. All ele-
ments in the channel matrices are independent and identically
distributed (i.i.d.) random variables.

The DoF tuple (d1, d2) is achievable by linear transceivers
without symbol extension if the following interference-free
transmission constraints can be satisfied,

EEEij �UUUH
i (GGGi1ΓΓΓ1FFF 1j + GGGi2ΓΓΓ2FFF 2j)VVV j = 000, i �= j, (1a)

rank
{
UUUH

i (GGGi1ΓΓΓ1FFF 1i + GGGi2ΓΓΓ2FFF 2i)VVV i

}
= di, (1b)

where EEEij is the interference generated from source j to des-
tination i, (1a) ensures interference-free and (1b) ensures re-
liable data transmission.

Our main result is shown in the following theorem.
Theorem 1: For the ((d1, M1, N1), (d2, M2, N2, ), R1, R2)

network, the following DoF region is achievable by linear
transceivers without symbol extension,

D = {(d1, d2)|1 ≤ di ≤ min {Mi, Ni} , i = 1, 2;
d1 + d2 ≤ R1 + R2 − 1, when Mi = Ni and

R1 + R2 = M1 + M2;
d1 + d2 ≤ R1 + R2, otherwise} .

(2)
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Compared with the cut-set outer bound, which is [13],

C = {(d1, d2)|1 ≤ di ≤ min {Mi, Ni} , i = 1, 2;
d1 + d2 ≤ R1 + R2} .

(3)

we can see that there is a DoF gap of one between our result
and the outer bound only in a setup when Mi = Ni and R1 +
R2 = M1 + M2. In all other setups, our result coincides with
the cut-set outer bound.

3. PROOF OF THE MAIN RESULT

In this section, we prove and explain the main result. We refer
the system with setup of Mi = Ni = di and R1+R2 = M1+
M2 as the standard system. We first prove that for the stan-
dard system, linear transceivers can not ensure interference-
free transmission, which results in the DoF loss from the cut-
set outer bound. Then we prove that when one additional an-
tenna is added to any one of the nodes in the standard system,
interference-free transmission can be ensured, from which we
obtain the DoF region for the considered network with arbi-
trary antenna configuration. Without loss of generality, we
assume that d1 ≤ d2 and R1 ≤ R2 in the rest of the paper.

3.1. Transceivers for The Standard System
In the sequel, we show that the solution of interference-free
equation (1a) for the standard system is ΓΓΓ1 = 000 and ΓΓΓ2 = 000,
hence data transmission constraint (1b) can not be ensured.

For notational simplicity, we consider symmetric stan-
dard systems ((d, d, d), (d, d, d), d, d). For asymmetric
standard systems, after some trivial transformations to the
interference-free equation the same result can be obtained,
which are omitted due to the lack of space.

In the symmetric standard system, the transmit and re-
ceive matrices and all the channel matrices are full rank
square matrices of size d × d. Therefore, (1a) reduces to

ΓΓΓ1 = −GGG−1
11 GGG12︸ ︷︷ ︸
AAA1

ΓΓΓ2FFF 22FFF
−1
12︸ ︷︷ ︸

BBB1

= −GGG−1
21 GGG22︸ ︷︷ ︸
AAA2

ΓΓΓ2FFF 21FFF
−1
11︸ ︷︷ ︸

BBB2

, (4)

where AAA1, AAA2, BBB1 and BBB2 are all full rank square matrices.
Denote SSS as the right eigenvectors of matrix AAA−1

1 AAA2 and
ΣΣΣ1 as a diagonal matrix composed of the eigenvalues of the
matrix such that AAA2SSS = AAA1SSSΣΣΣ2. Denote WWW as the left eigen-
vectors of matrix BBB2BBB

−1
1 and ΣΣΣ2 as a diagonal matrix com-

posed of the eigenvalues of the matrix such that WWWBBB2 =
ΣΣΣ1WWWBBB1. Note that SSS and WWW are full rank square matri-
ces. After substituting ΓΓΓ2 = SSSΓ̂̂Γ̂Γ2WWW into (4), we obtain an
equation ΣΣΣ1Γ̂̂Γ̂Γ2ΣΣΣ2 = Γ̂̂Γ̂Γ2, which can be rewritten as a set of
element-wise equations: σ1,iσ2,jγij = γij , where σ1,i is the
ith diagonal element of ΣΣΣ1, σ2,j is the jth diagonal element
of ΣΣΣ2, and γij is the element in the ith row and jth column of
Γ̂̂Γ̂Γ2. From the equations we have γij = 0, and hence ΓΓΓ2 = 000.
Further considering (4) we have ΓΓΓ1 = 000. This implies that for
the standard system the cut-set bound can not be achieved by
linear transceivers and a DoF gap from it exists.

3.2. Transceivers With Additional Antenna at Relay

When one extra antenna is added to one of the relays of the
standard system, the network becomes ((d1, d1, d1), (d2, d2, d2),
R1, R2) with R1 +R2 = d1 + d2 +1. We prove that for such
a network the interference-free transmission constraints (1a)
and (1b) can be satisfied, by finding the transceivers at each
source, destination and relay. We first find the transceivers
for two special systems to ensure interference-free trans-
mission, where the interference are removed by interference
neutralization. Then by introducing interference avoidance at
sources and interference cancelation at destinations, we show
that a general system can transmit without interference by
using the result for the two special systems.

A. Special system 1: ((d, d, d), (d, d, d), d, d + 1)
In this case, UUU i, VVV i and GGGi1 and FFF 1j are all full rank

square matrices of size d× d, while GGGi2 is of size d× (d + 1)
and FFF 2j is of size (d + 1) × d, i, j = 1, 2.

To ensure data transmission constraint (1b), we set the
transmit and receive matrices at sources and destinations as

VVV 1 = FFF−1
11 ,VVV 2 = FFF−1

12 ,UUUH
1 = GGG−1

11 ,UUUH
2 = GGG−1

21 .

To ensure interference-free constraint (1a), the processing
matrices at the relays are with the same form as in (4), i.e.,

ΓΓΓ1 = AAA1ΓΓΓ2BBB1 = AAA2ΓΓΓ2BBB2, (5)

where AAA1, AAA2 are of size d × (d + 1), and BBB1, BBB2 are of size
(d + 1) × d, all defined in (4). (5) ensures that the interfer-
ence received at each destination are summed to be zero, i.e.,
removed by interference neutralization.

Denote ΓΓΓ2 = PPPQQQ where PPP and QQQ are square matrices of
dimension d + 1 and ΣΣΣ = diag {σ1, · · · , σd+1} as a random
diagonal matrix with σr �= σr′ , r �= r′. We can find a matrix

QQQ =
[
qqq1, · · · , qqqd+1

]H
to ensure ΣΣΣQQQBBB1 = QQQBBB2 by setting

the rth row of QQQ as

qqqH
r = (σrBBB1 −BBB2)

⊥ , r = 1, · · · , d + 1. (6)

Considering the dimension of BBB1 and BBB2, the obtained qqqH
r is

non-zero and it is easy to show that qqqH
r and qqqH

r′ are linearly
independent when σr �= σr′ . Thus, the matrix QQQ is full rank.
Then (5) becomes

(AAA1PPP −AAA2PPPΣΣΣ)QQQBBB1 = 000. (7)

Because QQQBBB1 is of size (d + 1)× d, there exists a row vector
bbbH =

[
b1, · · · , bd+1

] ∈ C1×(d+1) such that bbbHQQQBBB1 = 000.

Therefore, (7) can be solved when AAA1PPP − AAA2PPPΣΣΣ = pppbbbH ,
where ppp ∈ Cd×1 is an arbitrary random vector. This can be
achieved by setting the rth column of PPP as

pppr = br (AAA1 − σrAAA2)
+

ppp, r = 1, · · · , d + 1. (8)

Using (6) and (8) we can obtain PPP and QQQ, then the relay
processing matrix at the 2nd relay ΓΓΓ2 is obtained. Further-
more, ΓΓΓ1 can be obtained from (5). By substituting the relay
processing matrices into (1b), it is easy to verify that the data
transmission constraint can be satisfied.
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B. Special system 2: ((d − 1, d − 1, d − 1), (d, d, d), d, d)
To satisfy data transmission constraint (1b), we set the

transmit matrices at both sources and the receive matrices at
both destinations as identity matrices. To enure interference-
free constraint (1a), we can show that the processing matrices
at the two relays should satisfy the following relationship,

ΓΓΓ1 =
[
GGG⊥

11,GGG
+
11

] [
t

TTT

] [
FFF⊥

11

FFF+
11

]
−GGG+

11GGG12ΓΓΓ2FFF 22FFF
−1
12 −GGG−1

21 GGG22ΓΓΓ2FFF 21FFF
+
11,

(9)

where t is a random variable and the square matrix satisfies

TTT
(a)
=GGG11GGG

−1
21 GGG22︸ ︷︷ ︸

(d−1)×d

ΓΓΓ2 FFF 21︸︷︷︸
d×(d−1)

(b)
= GGG12︸︷︷︸

(d−1)×d

ΓΓΓ2FFF 22FFF
−1
12 FFF 11︸ ︷︷ ︸

d×(d−1)

. (10)

WhenTTT satisfies equation (a) in (10), the corresponding relay
processing matrices in (9) ensure EEE12 = 000, which neutralizes
the interference at 1st destination. When TTT satisfies equation
(b), EEE21 = 000, neutralizing the interference at 2nd destination.
Using the same method as for the special system 1, we can
find ΓΓΓ2 by solving the equation in (10) and further obtain ΓΓΓ1

from (9), which can be shown also satisfy constraint (1b).

In the following, we show that a general system can trans-
mit without interference by using the result for special system
1 when R1 ≤ d1 and that for special system 2 when R1 > d1.

3.2.1. General case 1: R1 ≤ d1

Recalling the assumption that d1 ≤ d2 and R1 ≤ R2 and
there is an additional relay at relay, which is R1 +R2 = d1 +
d2 + 1, in this case, the relationship of the system parameters
should satisfy R1 ≤ d1 < d2 + 1 ≤ R2. To ensure (1b), we
set the transmit and receive matrices as

VVV 1 = [FFF+
11,FFF

⊥
11],VVV 2 = [FFF+

12,FFF
⊥
12],UUU

H
1 =

[
GGG+

11

GGG⊥
11

]
,UUUH

2 =

[
GGG+

21

GGG⊥
21

]
.

(11)To enure (1a), we set the processing matrix at the relays as

ΓΓΓ1
(a)

==== − (
GGG+

11GGG12

)
MMM︸ ︷︷ ︸

AAA1

Γ̂̂Γ̂Γ2NNN
(
FFF 22FFF

+
12

)︸ ︷︷ ︸
BBB1

(b)
=== − (

GGG+
21GGG22

)
MMM︸ ︷︷ ︸

AAA2

Γ̂̂Γ̂Γ2NNN
(
FFF 21FFF

+
11

)︸ ︷︷ ︸
BBB2

,

ΓΓΓ2 =
[
GGG⊥

22PPP 1, GGG⊥
12PPP 2, MMMΓ̂̂Γ̂Γ2

] ⎡
⎣QQQ1FFF

⊥
22

QQQ2FFF
⊥
21

NNN

⎤
⎦ ,

(12)

where PPP 1 ∈ C
(R2−d2)×(d1−R1), QQQ1 ∈ C

(d1−R1)×(R2−d2),
PPP 2 ∈ C(R2−d1)×(d2−R1), QQQ2 ∈ C(d2−R1)×(R2−d1) are arbi-
trary random matrices, and MMM , NNN are defined as

MMM =
(
GGG⊥

21GGG22

)⊥ ((
GGG⊥

11GGG12

) (
GGG⊥

21GGG22

)⊥)⊥

︸ ︷︷ ︸
R2×(R1+R1+R2−d1−d2)

,

NNN =

((
FFF 22FFF

⊥
12

)⊥ (
FFF 21FFF

⊥
11

))⊥ (
FFF 22FFF

⊥
12

)⊥

︸ ︷︷ ︸
(R1+R1+R2−d1−d2)×R1

.

(13)

AAA1, AAA2 are of size R1×(R1+1) andBBB1, BBB2 are of size (R1+
1) × R1, same as those in (5). Hence, Γ̂̂Γ̂Γ2 can be designed
using the same way as from (5). Then we can obtain ΓΓΓ1 and
ΓΓΓ2 from (12) ensuring data constraint as in special system 1.

From VVV i in (11) we observe that the transmit antennas
at source i can be divided into two parts. From the first R1

antennas the signals are transmitted with the sub-precoder
FFF+

1i ∈ Cdi×R1 and can be received by 1st relay. From the rest
of di − R1 antennas the signals are transmitted with the sub-
precoder FFF⊥

1i ∈ Cdi×(di−R1) and are avoiding to be received
by 1st relay because FFF 1iFFF

⊥
1i = 000. From the receive matrix

UUUH
i , we can see that the first R1 antennas with GGG+

i1 ∈ CR1×di

receive signals from both relays and the rest of di − R1 an-
tennas withGGG⊥

i1 ∈ C(di−R1)×di can cancel the receive signals
from 1st relay because GGG⊥

i1GGGi1 = 000.
From the number of rows of QQQ1FFF

⊥
22, QQQ2FFF

⊥
21 and NNN in

ΓΓΓ2, we can see that the antennas at relay 2nd can be divided
into three parts: (1) only the first d1 − R1 antennas receive
signals from the d1 − R1 antennas at the 1st source because
QQQ2FFF

⊥
21FFF 21FFF

⊥
11 = 000 and NNNFFF 21FFF

⊥
11 = 000; then these signals

are forwarded by GGG⊥
22PPP 1 such that they do not interfere with

the 2nd destination, becauseGGG⊥
22GGG22 = 000; (2) only the second

d2−R1 antennas receive signals from the d2−R1 antennas at
the 2nd source and forward them such that they do not inter-
fere with the 1st destination; (3) the rest R1 + 1 antennas re-
ceive signals with NNN from the R1 antennas of the two sources
and forward them with MMM Γ̂̂Γ̂Γ2 to the two destinations, these
signals will be neutralized with their counterparts forwarded
through the 1st relay using the processing matrix ΓΓΓ1.

In summary, by using interference avoidance at sources,
interference cancelation at destinations, and interference neu-
tralization through relays, the networks under this general
case can be decoupled into three sub-systems: (1) d1−R1 an-
tennas at the 1st source transmit d1−R1 data streams through
d1 − R1 antennas at the 2nd relay to d1 − R1 antennas at
the 1st destination without interfering the 2nd destination; (2)
d2 − R1 antennas at the 2nd source transmit d2 − R1 data
streams through d2 −R1 antennas at the 2nd relay to d2 −R1

antennas at the 2nd destination without interfering the 1st des-
tination; (3) the rest R1 antennas at both sources and destina-
tions transmit R1 data streams each through R1 antennas at
the 1st relay and R1+1 antennas at the 2nd relay, which is the
special system 1 ((R1, R1, R1), (R1, R1, R1), R1, R1 + 1).

3.2.2. General case 2: d1 < R1

Recalling that d1 ≤ d2, R1 ≤ R2 and R1+R2 = d1+d2+1,
in this case, the relationship of the system parameters should
be d1 < R1 ≤ R2 < d2 + 1. To ensure (1b), we set the
transmit and receive matrices as

VVV 1 = IIId1 ,VVV 2 =
[
FFF⊥

12,FFF
⊥
22,FFF

+
12V̄̄V̄V 2

]
,

UUUH
1 = IIId1 ,UUUH

2 =
[
(GGG⊥

21)
H , (GGG⊥

22)
H , (Ū̄ŪU

H
2 GGG+

21)
H

]H

,
(14)

where V̄̄V̄V 2 ∈ CR1×(d1+1) and Ū̄ŪU
H
2 ∈ C(d1+1)×R1 are arbitrary

random matrices.
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To enure (1a), we set the processing matrices at relays as

ΓΓΓ1 =
[
GGG⊥

11PPP 1,
(
GGG⊥

22GGG21

)⊥
Γ̂̂Γ̂Γ1

] [
QQQ1FFF

⊥
11(

FFF 12FFF
⊥
22

)⊥
]

,

ΓΓΓ2 =
[
GGG⊥

12PPP 2,
(
GGG⊥

21GGG22

)⊥
Γ̂̂Γ̂Γ2

] [
QQQ2FFF

⊥
21(

FFF 22FFF
⊥
12

)⊥
]

,

(15)

where PPP 1 ∈ C(R1−d1)×(d2−R2), QQQ1 ∈ C(d2−R2)×(R1−d1),
PPP 2 ∈ C(R2−d1)×(d2−R1), QQQ1 ∈ C(d2−R1)×(R2−d1) are arbi-
trary random matrices, and both Γ̂̂Γ̂Γ1 and Γ̂̂Γ̂Γ2 are of size (R1 +
R2 − d2) × (R1 + R2 − d2). Substituting (14) and (15) into
(1a), the interference-free constraints reduce to

Ĝ̂ĜG11︸︷︷︸
(d−1)×d

Γ̂̂Γ̂Γ1 F̂̂F̂F 12︸︷︷︸
d×d

+ Ĝ̂ĜG12︸︷︷︸
(d−1)×d

Γ̂̂Γ̂Γ2 F̂̂F̂F 22︸︷︷︸
d×d

= 000,

Ĝ̂ĜG21︸︷︷︸
d×d

Γ̂̂Γ̂Γ1 F̂̂F̂F 11︸︷︷︸
d×(d−1)

+ Ĝ̂ĜG22︸︷︷︸
d×d

Γ̂̂Γ̂Γ2 F̂̂F̂F 21︸︷︷︸
d×(d−1)

= 000,
(16)

where the expressions of Ĝ̂ĜGij and F̂̂F̂F ij are omitted due to the
lack of space, from whose dimension we see that (16) can be
viewed as the interference-free equation of a special system 2
with d = d1 + 1. Hence, Γ̂̂Γ̂Γ1 and Γ̂̂Γ̂Γ2 can be obtained using the
same way as in the special system 2.

Again, we can observe from (15) and (16) that the net-
works under this general case can be decoupled into three
sub-systems, where the third sub-system is the special sys-
tem 2, and the interference is avoided at sources, canceled at
destinations, and neutralized through relays.

3.3. Transceivers With Additional Antenna at Destina-
tion or Source

Now we show that when one extra antenna is added to
one of the sources or destinations of the standard system,
interference-free transmission can be satisfied. We only
present the transceivers for an example case of adding an
antenna to the 1st destination of the symmetric standard sys-
tem. The same idea can be employed to find the transceivers
to achieve the DoF region for other systems.

In the example system ((d, d, d + 1), (d, d, d), d, d), the
receive matrix UUUH

1 ∈ Cd×(d+1). Since the desired num-
ber of data streams at the 1st destination is only d, the in-
terference generated from the 2nd source can be aligned to
the one-dimension null space of UUUH

1 . To see this, we de-
note UUUH

1 = (UUU IC
1 )H(UUU IA

1 )H . (UUU IA
1 )H ∈ C(d+1)×(d+1), to-

gether with the relay processing matrices and transmit matrix
at the 2nd source, ensures that the interference are aligned,
and (UUU IC

1 )H ∈ Cd×(d+1) is the receive matrix that cancels
the aligned interference. Denote lll ∈ C(d+1)×1 as the null
space of (UUU IC

1 )H , i.e., (UUU IC
1 )Hlll = 000. When all interference

from the 2nd source are aligned in the space spanned by lll, the
1st destination can cancel all the aligned interference. In this
case, the interference-free constraints (1a) are equivalent to

(UUU IA
1 )H (GGG11ΓΓΓ1FFF 12 + GGG12ΓΓΓ2FFF 22)VVV 2 = lllrrrH , (17a)

UUUH
2 (GGG21ΓΓΓ1FFF 11 + GGG22ΓΓΓ2FFF 21)VVV 1 = 000. (17b)

To enure (1b), we set the transmit and receive matrices as

(UUUIA
1 )H =

[
1

Ḡ̄ḠG
−1
11

]
,UUUH

2 = GGG−1
21 ,VVV 1 = FFF−1

11 ,VVV 2 = FFF−1
12 ,

where Ḡ̄ḠG
−1
11 ∈ Cd×d is a sub-matrix in GGG1i =

[
gggH

1i

Ḡ̄ḠG1i

]
.

To ensure (17b), the processing matrix at the 2nd relay
can be obtained as ΓΓΓ1 = −GGG−1

21 GGG22ΓΓΓ2FFF 21FFF
−1
11 , which has

the same form as in equation (b) in (5). By substituting these
transceivers to (17a), we know that ΓΓΓ2 should be designed to
satisfy the following equations,

gggH
11AAA1ΓΓΓ2BBB1 + gggH

12ΓΓΓ2BBB2 = l1rrr
H , (18a)

AAA1ΓΓΓ2BBB1 + AAA2ΓΓΓ2BBB2 = lll2rrr
H , (18b)

where AAA1 = −GGG−1
21 GGG22, AAA2 = −Ḡ̄ḠG

−1
11 Ḡ̄ḠG12, BBB1 = FFF 21FFF

−1
11 ,

BBB2 = FFF 22FFF
−1
12 are of size d×d, and vector lll =

[
lH1 , lllH2

]H
.

Let WWW be the left eigenvectors of matrix BBB2BBB
−1
1 and ΣΣΣ

be the diagonal matrix composed of its eigenvalues, then sub-
stitute ΓΓΓ2 = Γ̂̂Γ̂Γ2WWW into (18a) and (18b). By solving (18b), we
can obtain an expression of each column in Γ̂̂Γ̂Γ2 as a function
of lll2; then by substituting the expression into (18a), we can
obtain the value of lll2 and therefore Γ̂̂Γ̂Γ2 and ΓΓΓ1.

From the designed transceivers we can see that now IA
is necessary except for interference avoidance, interference
cancelation and IN.

3.4. DoF Region of the Network

In the following, we show the DoF region for the 2 × 2 × 2
interference network with arbitrary antenna configurations.

When Mi = Ni and R1 + R2 = M1 + M2, the cut-set
bound implies that the system can transmit maximum d1 +
d2 = R1 + R2 data streams and di = Mi. From our anal-
ysis in section 3.1 we know that this DoF region can not be
achieved by linear transceivers because the interference-free
transmission can not be ensured. With one DoF loss from
the cut-set bound, totally R1 + R2 − 1 data streams can be
transmitted according to section 3.2, because one additional
antenna is now available at the relays.

For all the other systems, there will be at least one more
antenna than the total data streams at either a source, a desti-
nation or a relay. According to section 3.2 and 3.3, d1 + d2 ≤
R1 + R2 data streams can be transmit without interference.

This completes the proof of Theorem 1.

4. CONCLUSIONS

In this paper, we proved that the achievable DoF region of
the 2 × 2 × 2 interference network of arbitrary antenna con-
figurations coincides with the cut-set outer bound even with-
out symbol extension, except for one-DoF gap in one special
configuration. We showed that the out-bound can be achieved
by linear transceivers, where the interference is removed by
avoidance, neutralization and cancelation or further by align-
ment, depending on the antenna configurations.
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