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ABSTRACT

We model a SIS (susceptible-infected-susceptible) epidemics over
a static, finite-sized network as a continuous-time Markov process
using the scaled SIS epidemics model. In our previous work, we
derived the closed form description of the equilibrium distribution
that explicitly accounts for the network topology and showed that
the most probable equilibrium state demonstrates threshold behavior.
In this paper, we will show how subgraph structures in the network
topology impact the most probable state of the long run behavior of
a SIS epidemics (i.e., stochastic diffusion process) over any static,
finite-sized, network.

Index Terms— Reversible Markov process, equilibrium distri-
bution, SIS epidemics, graph density, densest subgraph, k-densest
subgraph, topology dependent random interaction model, networks

1. INTRODUCTION

The study of networks is becoming increasingly important in a va-
riety of disciplines. Incorporating explicitly the network topology
leads to unexpected behaviors that cannot be predicted by standard
models that discount topology [1].

In our work, we have been studying a diffusion process (e.g.,
epidemics) over a population whose interactions are captured by a
fixed topology network. We are interested in understanding how
network topology affects the epidemics process. Previous works by
others have shown that the time in which an epidemics dies out or
becomes endemic relates to the largest eigenvalue of the underlying
network topology ([2], [3], [4]). However, the model assumed by
these references does not consider the possibility that healthy agents
may spontaneously become infected without viral transmission from
infected neighbors; this type of infection is exogenous to the popula-
tion. In [5], [6], we introduced the scaled SIS (susceptible-infected-
susceptible) epidemics model, which accounts for both exogenous
infection and exogenous healing, in addition to endogenous infec-
tion (i.e., viral transmission from infected neighbors). We derived
the closed form expression of the equilibrium distribution of an epi-
demics over an arbitrary network topology. This paper continues
our analysis of solving for the most probable network state (i.e., the
network state with the maximum equilibrium probability). We in-
troduce the model and the relevant question we address in section
2. In sections 3 and 4, we interpret network states as subgraphs of
the network. In section 5, we determine how the subgraph density
affects the most probable network state. Finally, section 6 concludes
the paper.
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2. MODEL

Consider a population ofN agents whose interconnections are repre-
sented by a static, simple, unweighted, undirected, connected graph,
G(V,E), where V (G) is the set of vertices and E(G) is the set of
edges. The topology of G is captured by the symmetric, N × N
adjacency matrix, A. The state of the ith agent is denoted by xi.
Each agent can be in one of two possible states: healthy (xi = 0)
or infected (xi = 1); we use the term infectives to refer to infected
agents and susceptibles to refer to healthy agents. Let

x = [x1, x2, . . . , xN ]T .

We will refer to xi as the agent state and to x as either the net-
work state or the network configuration in this paper. Let X =
{x}, |X | = 2N , be the network state space.

The scaled SIS (susceptible-infected-susceptible) epidemics
model captures the evolution of the network state over time. Let
X(t) = x be the state of the network at time t, t ≥ 0. The SIS
epidemics assumes that infectives can heal and become reinfected;
this means that the total number of agents in the population remains
constant, unlike SIR epidemics (susceptible-infected-removed). We
showed in [5] that we can model X(t) as a continuous-time Markov
process.

The time the Markov process spends in a particular state is ran-
dom and exponentially distributed. The transition rate matrix Q is
the object of interest with continuous-time Markov process. Adapt-
ing notation from [7], we define 2 operators on the network state,
x = [x1, x2, . . . xi, . . . xj , . . . , xN ]T :

Hix = [x1, x2, . . . , xi = 1, . . . , xN ]T

Hj•x = [x1, x2, . . . , xj = 0, . . . , xN ]T .

The operatorHi defines the operation that agent i becomes infected.
If agent i is already infected, the operator does nothing. The operator
Hj• defines the operation that agent j is healed. If agent j is already
uninfected, the operator does nothing.

The two types of state transitions X(t) captures corresponding
to healing and infection events respectively:

1)X(t) jumps to the network state where, a single agent, the jth
agent (j = 1, . . . , N), is healed with transition rate:

q(x,Hj•x) = µ, x ̸= Hj•x. (1)

2) X(t) jumps to the network state where a single agent, the ith
agent (i = 1, 2, . . . , N), is infected with transition rate

q(x,Hix) = λγdi (2)
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where di =
∑N

j=1 1(xj = 1)Aij is the number of infected neigh-
bors of node i. The symbol 1(·) is the indicator function, and A =
[Aij ] is the adjacency matrix of G.

We call the parameter µ the healing rate. The parameter λ is
the exogenous (i.e., spontaneous) infection rate since if di = 0, the
infection rate is still λ. The parameter γ is the endogenous infec-
tion rate since it is dependent on the number of infected neighbors;
consequently, we will also refer to γ as the topology dependent pa-
rameter and to λ and µ as topology independent parameters. The
scaled SIS epidemics model does not have an absorbing state (i.e.,
network states where all agents are infectives or all agents are sus-
ceptibles) because it accounts for both exogenous infection and the
exogenous healing [2], [3], [4].

We can derive the closed form equilibrium distribution of the
scaled SIS epidemics model. In contrast, there is no known closed
form equilibrium distribution for the more commonly used topology
dependent SIS epidemics model used in research [2, 3, 8]. We call
these type of models the additive SIS epidemics model since their
infection transition rate q(x,Hix) = λ+ diγ.

2.1. EquilibriumDistribution andMost Probable Configuration

In [5], [6], we proved that the equilibrium distribution forX(t) is

π(x) =
1
Z

(

λ

µ

)1T x

γ
x
T

Ax

2 , x ∈ X (3)

where Z, known as the partition function, is the normalization con-
stant and is defined as

Z =
∑

x∈X

(

λ

µ

)1T x

γ
x
T

Ax

2 . (4)

The equilibrium distribution is the true limiting distribution of
the process. In [6], we solved for configuration(s) with the highest
probability since these are configurations that we would most likely
observe at equilibrium. Using (3), the most probable network state,
x
∗, is

x
∗ = argmax

x∈X
π(x) = argmax

x∈X

(

λ

µ

)1T x

γ
x
T

Ax

2 (5)

Our work in [6] focused on solving (5) for different network
topologies without having to solve a binary integer programming
problem. We divided the parameter space into 4 different regimes:

I) Healing Dominant: 0 < λ
µ
≤ 1, 0 < γ ≤ 1;

II) Endogenous Infection Dominant: 0 < λ
µ
≤ 1, γ > 1;

III) Exogenous Infection Dominant: λ
µ
> 1, 0 < γ ≤ 1;

IV) Infection Dominant: λ
µ
> 1, γ > 1.

We summarize the main results of [6]. In regimes I and IV, for
any underlying network topology, x∗ = x

0 = [0, 0, . . . , 0] and
x
∗ = x

N = [1, 1, . . . , 1]. Network topology dependence exists
only in regime II and regime III, where the effect of the topology
dependent process (controlled by γ) opposes the effect of the topol-
ogy independent process (control by λ, µ). More interestingly for
regimes II and III, x∗ exhibits threshold behavior depending on both
the model parameters and on the network topology. In the rest of this
paper, we focus only on regime II.
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Fig. 1: Example Network Topologies

3. SPURIOUS MOST PROBABLE NETWORK STATE IN
REGIME II

We showed in [6], that, in regime II) Endogenous Infection
Dominant: 0 < λ

µ
≤ 1, γ > 1, for three network topolo-

gies: k-regular, complete multipartite, and complete multipar-
tite with k-regular islands, the solution to (5) can only be either
x
0 = [0, 0, . . . , 0], the configuration where all agents are suscepti-
bles, or xN = [1, 1, . . . , 1], the configuration where all agents are
infectives. Furthermore, we derived the exact threshold for when x∗

transitions between these two configurations.
We observed that, for other network topologies, the solution

to (5) may be configurations other than x0 or xN for certain range
of the parameters. We call these solutions spurious configurations.
Consider graph A shown in Figure 1a and graph B shown in Fig-
ure 1b. Graph A is a 16 node Erdős-Rényi random graph, while
graph B is a 16 node Watts-Strogatz graph [1]. For these network
topologies, if we hold the λ and µ parameters constant, the solution
to (5) is a function of γ. However, this function is highly discon-
tinuous as shown in Figure 2 and Figure 3. We set λ = 1, µ = 2
while varying γ from 1 to 4 with incremental step size of 0.1. On
the Y-axis, we plot the total number of infectives in x∗.

Since λ
µ

= 0.5, the exogenous healing rate µ is larger than
the exogenous infection rate λ. When γ is low, the effect of the
topology independent process (λ, µ) dominates the topology depen-
dent process (γ), so the most probable network state we expect is
x
0 = [0, 0, . . . , 0]. But at high γ values, the effect of the topology
independent process (λ, µ) is dominated by the effect of the topology
dependent process (γ) so the solution to (5) is xN = [1, 1, . . . , 1].

Note that for a narrow range of γ values, the number of infec-
tives in x

∗ is neither 0 nor 16. In the Erdős-Rényi graph A, for
γ approximately between 1.6 and 2, it is 9. In the Watts-Strogatz
graph B, for γ between 1.3 and 1.5, it can be 14 or 15, but not 16.
These correspond to the spurious most probable network states. Fig-
ure 4a shows the actual spurious x∗ for graph A where 9 agents are
infected but 7 agents remain healthy. Figure 4b and Figure 4c show
these spurious configurations for graph B.

In [6], we only made observations regarding these spurious con-
figurations. Now we are are ready to answer the following questions
regarding these spurious solutions to (5):

1. What kind of network topologies exhibit these spurious con-
figurations?

2. What model parameters (λ, γ, µ) will result in these spurious
configurations?

We will show that the existence of these spurious configurations
is related to subgraphs within the network and to the concept of
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Fig. 2: Most Probable Configuration x∗ for Graph A
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Fig. 3: Most Probable Configuration x∗ for Graph B

graph density.

4. NETWORK CONFIGURATION INDUCED SUBGRAPH

The graph H is an induced subgraph of G if: 1) two vertices in H
are connected if and only if they are connected in G [9]; and 2) the
vertex set and edge set of H are subsets of the vertex set and edge
set of G.

V (H) ⊆ V (G), E(H) ⊆ V (G)

In this paper, we say that H is an induced subgraph of the network
state x if the nodes in the subgraph H are the infected nodes in x

and the edges ofH are edges where both end nodes are infected.

V (H(x)) = {vi ∈ V (G) | xi = 1}

E(H(x)) = {(i, j) ∈ E(G) | xi = 1, xj = 1}.
(6)

For example, The entire network G is its own subgraph; it is the
subgraph induced by the configuration xN . The empty graph is the
subgraph induced by the configuration x0. Figures 5 and 6 show two
network configurations and their corresponding induced subgraphs.

Theorem 4.1. If the induced subgraphs of two network configura-
tions, x1 and x2, are isomorphic, then π(x1) = π(x2).

Proof. By definition, |V (H(x))| = 1Tx and |E(H(x))| = x
T Ax

2 .
Consider that x1 and x2 induce two graphs H(x1) and H(x2).
Since H(x1) is isomorphic to H(x2), the number of nodes and the
number of edges are the same for H(x1) and H(x2) [9]. By con-
struction, we know that the number of nodes in H(x1) = 1Tx1 =
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Fig. 4: Spurious x∗ (Grey = Infectives, White = Susceptibles)

1Tx2, and the number of edges in H(x1) =
x
T
1
Ax1

2 =
x
T
2
Ax2

2 .
From (3), we can conclude that π(x1) = π(x2).
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Fig. 5: (a) configuration x1 = [0, 1, 1, 1, 0, 0, 0]T ; (b) induced sub-
graph H(x1)

It’s important to note that Theorem 4.1 is only applicable to
the scaled SIS model. For the more commonly used additive SIS
model, we proved in [8] that two network configurations, x1 and x2

are equally probable at equilibrium if their corresponding induced
colored graphs are isomorphic; this is a much stricter condition to
satisfy. Consider the network configurations x1 and x2 as shown
in Figures 5 and 6. The overall colored graphs are not isomorphic
whereas the induced subgraphs H(x1) andH(x2) are; so these two
configurations are equally probable at equilibrium only in the scaled
SIS model and not in the more common additive SIS model.

In the next section, we discuss how the existence of spurious
configurations is related to the density of these induced subgraphs.
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Fig. 6: (a) configuration x2 = [0, 0, 0, 0, 1, 1, 1]T ; (b) induced sub-
graphH(x2)

5. GRAPH DENSITY

The density of graph G is defined as [10]

d(G) =
|E(G)|
|V (G)|

.

Wewill refer to the density of the entire graphG as the network den-
sity, and the density of the subgraphs of G as the subgraph density.
By definition, the density of the empty graph, H(x0), is 0.

In regime II) Endogenous Infection Dominant: where 0 <
λ
µ

≤ 1, γ > 1, the existence of spurious configuration(s) as solu-
tion(s) to (5) is related to the existence of subgraphs whose density
is larger than the overall network density d(G). We omit the proof
here due to space constraints and simply state the following result:

Theorem 5.1. When 0 < λ
µ
≤ 1, γ > 1, if there exists at least one

subgraph H inG with density d(H) for which

0 <
log

(

λ
µ
γd(G)

)

log
(

λ
µ
γd(H)

) <
N ′

N
, (7)

then x∗ = x
′ ∈ X ,x∗ ̸= x

0, and x∗ ̸= x
N .

The implication of Theorem 5.1 is that in, regime II, subgraphs
which are denser than the overall graph may also be solutions to (5).
We know from Theorem 4.1 that it is possible that these solutions
are not unique since multiple dense subgraphs may be isomorphic to
each other.

We will illustrate Theorem 5.1 using Graph A, shown in Fig-
ure 1a. We know from prior numerical calculation what the spurious
configuration is (see Figure 4a), so we will use Figure 2 to show the
validity of theorem 5.1.

For Graph A, N = 16, E = 19, so the network density is 19
16 .

There is at least one denser induced subgraph in Graph A (i.e., the
subgraph containing only infectives) as shown in Figure 4a. This
subgraph has 9 nodes and 12 edges, so its density is 12

9 . We know
that λ

µ
= 0.5 and the density of each subgraph; solving

log
(

0.5γ
19

16

)

log
(

0.5γ
12

9

) > 0, (8)

we see that the range of γ values for which this is true is (2
19

16 ,∞).
Since this is a lower bound, we can see from figure 2 that when γ is
slightly above 2

19

16 = 1.79, the most probable configuration is the
spurious configuration.

Solving for the RHS of (7),

log
(

0.5γ
19

16

)

log
(

0.5γ
12

9

) >
9
16

, (9)

the range of range of γ values for which this is true is (0.5(−1),∞).
Since this is an upper bound, we can see in Figure 2 that when γ
is slightly below 0.5(−1) = 2, the most probable configuration is a
spurious configuration.

Intuitively, this shows that if the topology dependent parameter
γ is particularly large or small with respect to a constant λ

µ
, then the

subgraph structures in the network topology may not matter. Oth-
erwise, the solutions to the (5) will be dependent on the subgraph
structures in the network topology.

Finding these thresholds require that we find the dense sub-
graphs in the network topology. In graph theory, there are two major
problems related to dense subgraphs: 1) densest subgraph problem,
2) k-densest subgraph problem. The densest subgraph problem is
the problem of finding the subgraph with the maximum density with
no constraint on the number of nodes in the subgraph. It is known
that this problem can be solved in polynomial time exactly and in
linear time in approximation for undirected graphs. The k-densest
subgraph problem is the problem of finding the subgraph with max-
imum density containing exactly k nodes. The k-densest subgraph
problem (DkS) is known to be NP-hard [10]. Knowing the solutions
to the k-densest subgraph problem will give us all the spurious con-
figurations in a given topology. We will show with rigor in future
work that just knowing the densest subgraph will give us an idea of
if we should worry about subgraph structures or not. For instance,
if we treat the epidemics as a design problem, then we can bias the
model parameters in such a way that we can ensure that the solution
to (5) can only be x0 or xN for any network topology.

6. CONCLUSION

In this paper, we have shown that, for the scaled SIS epidemics
X(t), we can interpret the network states of the epidemics as in-
duced subgraphs; therefore, induced subgraphs that are isomorphic
are equally probable in equilibrium. This is a less strict condition
than the one we derived for the additive SIS epidemics in [8]. Sec-
ond, we showed that in regime II) Endogenous Infection Domi-
nant: where 0 < λ

µ
≤ 1, γ > 1, the spurious configurations (i.e.,

solutions to (5) other than the non infected x0 and the whole popula-
tion infected xN ) correspond to subgraph structures in the network
topology that are denser than the overall network topology. In future
work, we will prove that if we know the density of these subgraphs
then we can find the thresholds where x∗ transitions from x

0 to the
spurious configuration(s) and from the spurious configuration(s) to
x
N .
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