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ABSTRACT

Consider a wireless network formed by fixed or mobile nodes.
Each node seeks to estimate its own position based on noisy
measurements of the relative distance with other nodes. In
a centralized batch mode, positions can be retrieved (up to a
rigid transformation) by applying Principal Component Anal-
ysis (PCA) on a so-called similarity matrix built from the rel-
ative distances. In this paper, we propose a distributed on-line
algorithm allowing each node to estimate its own position
based limited exchange of information in the network. Our
framework encompasses the case of sporadic measurements
and random link failures. We prove the consistency of our
algorithm in the case of fixed sensors. Our numerical results
also demonstrate the attractive performance of the algorithm
for tracking the positions of mobile sensors. Simulations are
conducted on a wireless sensor network testbed.

Index Terms— Distributed algorithms, On-line algo-
rithms, Localization, Principal Component Analysis, Wire-
less Sensor Networks.

1. INTRODUCTION

Self-localization in Wireless Sensor Networks (WSN) have
raised a great deal of attention in the signal processing com-
munity during the last decades (see [1] or [2] for an overview).
In many situations, sensors are unaware of their true positions,
but are able to measure their distance with other neighboring
sensors. For instance, the inter-sensor distances can be esti-
mated by means of the Received Signal Strength (RSS) inten-
sity, which is directly related to the distance. In such situation,
the aim is to build a map of the sensors’ positions based on
the relative distances. In the litterature, the task is often made
easier by the assumption that the network contains a signi-
ficative number of anchor-nodes whose position is perfectly
known. In other situations, specially in distributed mobile
sensor networks, such anchor nodes may not be present, or too
far away. One should therefore rely on anchor-free method.
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The problem is often referred to as multidimensional scaling
(MDS). The MDS-MAP algorithm is based on the analysis of
the principal components (PCA) of a so-called similarity ma-
trix constructed from the relative sensors distances (see [3],
[4] for a complete description and analysis). Alternative ap-
proaches for MDS on the localization context include : stress
function majorization (see [5] Chapter 8), the so-called local-
MDS-MAP algorithm [6] which relies on merging local maps
and several optimization techniques using semidefinite pro-
gramming (see [7, 8]), a mass-spring model as in [9] or kernel
regression methods as in [10].

Standard algorithms such as those mentioned above are
batch algorithms in the sense that the positions are estimated
only once – after the prior estimation of relative distances. In
this paper, we focus on on-line approaches: each node makes
use of a new observation to update the current estimate of
its position, and delete its observation after use. This con-
text is specially useful in the case when the sensors need to
keep track of their position. In that case, an online version
of the MDS-MAP algorithm can be obtained by using the so-
called Oja’s algorithm [11, 12] which extracts a sought prin-
cipal eigenspace.

More recently, the emergence of distributed sensor net-
work raised the question of implementing such algorithms
in a distributed fashion [13]. A distributed (batch) algo-
rithm for stress function majorization based on a round-robin
communication scheme has been proposed in [14]. On-line
distributed gossip-based algorithms have been proposed in
[15] and [16]. A distributed version of [9] can be found in
[17]. More recently, several attempts have been made to
extend Oja’s algorithm to a distributed asynchronous set-
ting [18] [19] but the applicability of such approaches to the
problem of self-localization remains unexplored.

In this paper, we propose a distributed online anchor-free
method for self-localization. Our algorithm is asynchronous
and encompasses the case of random link failures and ran-
dom noisy and sporadic RSS measurements. The paper is or-
ganized as follows. Section 2 introduces the framework and
recalls the standard centralized batch MDS approach for lo-
calization. Section 3 investigates the case of centralized on-
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line MDS. Section 4 introduces our algorithm and states the
main convergence result. Numerical results on a testbed are
provided in Section 5.

2. THE FRAMEWORK

2.1. Context and objective

Consider N agents seeking to estimate their respective posi-
tions {x1, · · · ,xN}. We assume that xi are row-vectors in
R1×p for any i, where p < N (in practice, p = 2 or 3). We
assume that agents have access to noisy measurements of rel-
ative distances di,j = ‖xi − xj‖2 for all i, j ∈ {1, · · · , N}.
Based on these noisy measurements, the objective of the net-
work is to estimate the agent’s positions each time new obser-
vations are made.

It is worth noting that the above problem is in fact ill-
posed. Exact positions are identifiable only up to a rigid trans-
formation. Indeed, quantities (di,j)i,j are preserved when an
isometry is applied to the agents’ positions. The problem is
generally circumvented by assuming that some of the agents
(called anchor nodes) are perfectly aware of their position.

2.2. Centralized batch MDS

Although this paper focuses on online localization, it is use-
ful for the sake of completeness to first mention the stan-
dard batch MDS approach. Define S as the N × N ma-
trix of square relative distances i.e., S(i, j) = d2i,j . Define
x = 1

N

∑N
i=1 xi as the center of mass of the agents. Upon

noting that d2i,j = ‖xi−x‖2+‖xj−x‖2−2〈xi−x,xj−x〉,
one has:

S = c1T + 1cT − 2XXT (1)

where T stands for transpose, 1 is theN×pmatrix whose
components are all equal to one, c = (‖x1−x‖2, · · · , ‖xN−
x‖2)T and X is a N × p matrix whose ith line coincides with
the row-vector xi − x. Otherwise stated, the ith line of X
coincides with the barycentric coordinates of agent i.

Define J = 11T /N as the orthogonal projector onto the
linear span of 1. Define J⊥ = IN − J as the projector onto
the space of vectors with zero sum, where IN is the N × N
identity matrix. It is straightforward to verify that J⊥X = X .
Thus, introducing the matrix

M , −
1

2
J⊥SJ⊥ ,

equation (1) implies that M = XXT . In particular, M is
symetric non-negative and has rank (at most) p. The agents’
coordinates can be recovered from M (up to a rigid transfor-
mation) by recovering the principal eigenspace of M i.e., the
vector-space spanned by the pth principal eigenvectors (see
Chapter 12 in [5]). Denote by {σk}Nk=1 the eigenvalues of M
in decreasing order. In the sequel, we shall always assume

that σp > 0, meaning that M has a full column-rank p. De-
note by {uk}pk=1 corresponding unit-norm N × 1 eigenvec-
tors. Set X̂ = (

√
σ1u1, · · · ,

√
σpup). Clearly M = X̂X̂T

and X = QX̂ for some matrix Q such that QQT = IN . Oth-
erwise stated, X̂ coincides with the barycentric coordinates
X up to an orthogonal transformation. In practice, matrix S
is usually not perfectly known and must be replaced by an
estimate. This yields Algorithm 1 (Chapter 12 in [5]).

Algorithm 1 Centralized batch MDS for localization

Input: Noisy estimates d̂i,j of di,j for all i, j.

1. Compute matrix Ŝ = (d̂2i,j)i,j=1,...,N .
2. Set M̂ = − 1

2J⊥ŜJ⊥.
3. Find the p principal eigenvectors {uk}pk=1 and eigenvalues
{σk}pk=1 of M̂ .
Output: X̂ = (

√
σ1u1, · · · ,

√
σpup)

3. CENTRALIZED ONLINE MDS

From now on, we focus on online localization.

3.1. Observation Model

At each time instant n, we assume that with probability
qi,j , an agent i is able to obtained an estimate Sn(i, j) of
the square distance with an other agent j 6= i. The most
typical case is when Received Signal Strength (RSS) mea-
surements are made. A traditional model in wireless sensor
network [20] assumes that the average attenuation Pi,j be-
tween nodes i and j is related to the distance di,j through
Pi,j = P0 − 10η log10 di,j/d0. Parameters P0, η and d0 are
predetermined constants which depend on the transmission
medium. We introduce a collection of independent random
variables (Pn(i, j) : i, j = 1, · · · , N, n ∈ N) such that
Pn(i, j) follows a Gaussian distribution of mean Pi,j and
variance σ2. It is easy to verify from [21] that the quantity

Dn(i, j) , d2010
Pn(i,j)−P0

5η 10
−σ

2 ln 10
50η2 (2)

is an unbiased estimate of d2i,j i.e., E(Dn(i, j)) = d2i,j .
We set Dn(i, i) = 0. We assume that node i makes an
observation and computes the estimate Dn(i, j) with prob-
ability qi,j and makes no observation otherwise. Thus,
one can represent the available observations as the prod-
uct Bn(i, j)Dn(i, j) where (Bn)n is an i.i.d. sequence of
random matrices whose components Bn(i, j) follow the
Bernoulli distribution of parameter qi,j . Stated otherwise,
node i observes the ith line of matrix Bn ◦ Dn at time n
where ◦ stands for the Hadamard product.

Lemma 1. Assume qi,j > 0 for all pairs i, j. Set W :=

[q−1i,j ]Ni,j=1 and let Bn, Sn be defined as above. The matrix

Sn ,W ◦Bn ◦Dn (3)
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is an unbiased estimate of S i.e., E(Sn) = S.

3.2. Oja’s online PCA

Our objective is to eventually find a point in the set χ ofN×p
matrices whose columns are orthonormal and span the vector
space associated with the p principal eigenvalues of M .

As a consequence of Lemma 1, an unbiased estimate of
M is simply obtained by Mn = − 1

2J⊥SnJ⊥. When faced
with random matrices Mn having a given expectation M , the
principal eigenspace of M can be recovered by the following
algorithm, due to Oja [22] and analyzed in [23]. The algo-
rithm generates a sequence (Un)n of N × p matrices accord-
ing to:

Un = Un−1 + γn
(
MnUn−1 − Un−1

(
UT
n−1MnUn−1

))
, (4)

where γn > 0 is a step size.
In order to have more insight, it is convenient to interpret

(4) as a Robbins-Monro algorithm (see Chapter 3, [24]) of the
form Un = Un−1 + γn(h(Un−1) + ξn) where ξn is a martin-
gale increment noise and h is the so-called mean field of the
algorithm given by h(U) = MU − UUTMU . It is known
that under adequate stability assumptions and vanishing step
size γn, the algorithm converges to the roots of h (Theorem
2 in [24]). By Theorem 1 of [11] the roots of h are essen-
tially rotations of matrices whose columns are eigenvectors of
M , multiplied by some scalar, including zero. Thus, strictly
speaking, the algorithm might converge to a broader set than
the sought set χ. Fortunately, it is known since [25] that all
roots of h outside the set χ are unstable. Undesired points
can be avoided by standard avoidance-of-traps methods (see
Chapter 4 in [26] and [27]).

In practice, the algorithm (4) is known to suffer from
numerical unstabilities depending on the initialization [23].
However, since we are expecting convergence to unit-norm
vector, these unstabilites can be avoided by introducing a
projection step:

Un = ΠK

[
Un−1 + γn

(
MnUn−1 − Un

(
UT
n−1MnUn−1

))]
, (5)

where K is any arbitrary compact convex set whose inte-
rior contains χ, and where ΠK is the projector onto K. For
completeness, we mention that the authors of [12] proposed
an alternative normalization procedure which allows to avoid
projection, but which seems difficult to generalize to the dis-
tributed context.

3.3. Localization

Let un,k denote the kth column of matrix Un. If (un,k)n
converges to one of the eigenvectors of M , then the quan-
tity σn,k recursively defined by σn,k = (1 − γn)σn−1,k +
γnu

T
n−1,kMnun−1,k converges to the corresponding eigen-

value (see [23]). Finally, an estimate of the barycentric coor-
dinates are obtained by X̂n = diag(

√
σn,1, · · · ,

√
σn,p)Un.

4. DISTRIBUTED ONLINE MDS

4.1. Sparse Asynchronous Communications

It is clear from the previous section that an unbiased esti-
mate of matrix M is the first step needed to estimate the
sought eigenspace. In the centralized setting, this estimate
was given by matrix Mn = − 1

2J⊥SnJ⊥. As made clear in
Section 3.1, each node i observes the ith row of matrix Sn.
As a consequence, node i has access to the ith row-average
Sn(i) , 1

N

∑
j Sn(i, j). This means that matrix SnJ⊥ can be

obtained with no need to further exchange of information in
the network. On the other hand, J⊥SnJ⊥ requires to compute
the per-column averages of matrix SnJ⊥. This task is diffi-
cult in a distributed setting, as it would require that all nodes
share all their observations at any time. A similar obstacle
happens in Oja’s algorithm when computing matrix products.
To circumvent the above difficulties, we introduce the follow-
ing sparse asynchronous communication framework.

At time n, we assume that a given node ιn wakes up and
transmits a message to other nodes. A given node i 6= ιn
receives the latter message with probability q.

Definition 1 (Asynchronous Transmission Sequence). Let
q be a real number such that 0 < q < 1. We say that
the sequence of random vectors Tn = (ιn, Zn,i : i ∈
{1, · · · , N}, n ∈ N) is an Asynchronous Transmission Se-
quence (ATS) if: i) all variables (ιn, Zn,i)i,n are indepen-
dent, ii) ιn is uniformly distributed on the set {1, · · · , N}, iii)
∀i 6= ιn, Zn,i is a Bernoulli variable with parameter q i.e.,
P[Zn,i = 1] = q and iv) Zn,ιn = 0.

4.2. The Algorithm

Similarly to (4), our aim is to iteratively generate a sequence
of N × p matrices Un. In our distributed framework, each
node i is in charge of the update of the ith row of Un de-
noted by Un(i) (not to be confused with the kth column pre-
viously denoted by un,k).

Consider a ATS (Tn)n. Assume that the active node ιn
broadcasts its former estimates Un−1(ιn) and Sn(i). All
nodes i such that Zn,i = 1 receive the estimates. Thus, all
nodes compute:

Yn(i) = M̂n(i, i)Un−1(i) +
N

q
Un−1(ιn)M̂n(i, ιn)Zn,i (6)

where for any i, j,

M̂n(i, j) =
Sn(i) + Sn(j)

2
−
Sn(i, j) + δn(i)

2
(7)

δn(i) =
Sn(i)

N
+
Sn(ιn)Zn,i

q
. (8)

As will be made clear below, the matrix Yn whose ith
row coincides with Yn(i) can be interpreted as an unbiased
estimate of MUn−1 i.e., E(Yn|Un−1) = MUn−1.
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Consider a second ATS (T ′n)n. At time n, node ι′n wakes
up and broadcasts the product Un−1(ι′n)TYn(ι′n) to other
nodes. Receiving nodes are those i’s for which Z ′n,i = 1.
Similarly to (5), we set:

Un(i) = ΠI [Un−1(i) + γn (Yn(i)− Un−1(i)Σn(i))] , (9)

Σn(i) = Un−1(i)TYn(i) +
N

q
Un−1(ι′n)TYn(ι′n)Z′n,i . (10)

where for any i ΠI is the projector onto the set I ,
[−r, r]p for an arbitrary r > 1 and Σn(i) is a p× p matrix.

To obtain the estimate position X̂n(i) at each sensor i as
in Section 3.3, the sequence of p eigenvalues are generated at
each i as the following square matrix p× p :

σn(i) = σn−1(i) + γn(diag(Σn(i))− σn−1(i))

then, X̂n(i) = Un(i)
√
σn(i) (11)

Algorithm 2 Distributed On-line MDS for localization
At each time n = 1, 2, . . .

[Local step]:

• Nodes make sparse measurements of their respective RSS.

• Each node i evaluates (Sn(i, j), j = 1, . . . , N) and Sn(i)
using (2) and (3).

[Communication step]:

• A node ιn randomly selected broadcasts Un−1(ιn) and
Sn(ιn) to nodes i such that Zn,i = 1.

• Each node i computes Yn(i) by (6).

• A node ι′n randomly selected broadcasts Un−1(ι
′
n)

TYn(ι
′
n)

to nodes i such that Z′n,i = 1.

• Each node i updates Un(i) and X̂n(i) by (9) and (10)-(11).

4.3. Convergence analysis

Regarding the convergence, we prove that if the sensors’ po-
sitions are fixed, the algorithm recovers the latter up to a rigid
transformation.

Assumption 1 (Step size). Sequence (γn)n satisfies γn >
0→ 0,

∑
n γn = +∞ and

∑
n γ

2
n <∞.

Proposition 1. For any U ∈ RN×p, set h(U) = MU −
UUTMU . Let Un be defined by (9). There exists two ran-
dom sequences (ξn, en)n such that, almost surely (a.s.), en
converges to zero,

∑
n γnξn converges and

Un = Un−1 + γn(h(Un−1) + ξn + en) . (12)

Theorem 1 (Main result). Let Un be defined by (9) and
σn,k be defined by (11). Under Assumption 1, for any
k = 1, · · · , p, the kth column un,k of Un converges to an
eigenvector of M with unit-norm. Moreover, σn,k converges
to the corresponding eigenvalue.

Proof. The proof is an immediate consequence of Propo-
sition 1 along with Theorem 2 of [24]. Sequence Un con-
verges a.s. to the roots of h. The latter roots are characterized
in [11]. In particular, h(U) = 0 implies that each column of
U is a unit-norm eigenvector of M . The detailed proofs will
be given within an extension version of this work. n

Note that Theorem 1 might seem incomplete in some re-
spect: one indeed expects that the sequence Un converges
to the set χ characterizing the principal eigenspace of M .
Instead, Theorem 1 only guarantees that one recovers some
eigenspace of M . As discussed in Section 3.2, undesired
limit points can be theoretically avoided by introducing an
arbitrary small Gaussian noise inside the parenthesis of the
lefthand side of (9) (see Chapter 4 in [26]).

5. NUMERICAL RESULTS

We consider a set of N = 10 nodes selected from the
SensLAB platform [28] (CC2420 sensor nodes which can
be managed by uploaded firmwares) which are able to ex-
change packets and collect corresponding RSS measures.
The estimated parameters are : σ2 = 16.4, P0 = −60.3
and η = 2.1. As described in Section 4 we set qij = 0.8
∀i, j, q = 0.5 and γt = 0.015√

t
. Figure 1 shows the average

estimated relative positions over 100 independent runs after
2000 iterations of Algorithm 2.
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Fig. 1: Denote as : (O) the random initialized positions, (u) the real relative
positions and (X) the average estimated.

To illustrate the impact of the level noise σ2 and com-
munication parameters qij and q, we draw a graph of N = 10
randomly located within the unit square [0, 1]x[0, 1]. Figure 2
displays a comparison about the mean error of both first and
second estimated eigenvectors for different sparsity degrees
(qij and q) and considering both noiseless and noisy cases.
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Fig. 2: Root mean square error as a function of the number of iterations
n from the first estimated eigenvector un,1 (on the right) and the second
estimated eigenvector un,2 (on the left).
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