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ABSTRACT

We consider a demand side management model in which the power
provider adopts an adaptive pricing strategy that depends on fluctua-
tions in renewable sources and consumption behavior of customers with
heterogeneous marginal utilities in the smart grid. Given the adaptive
pricing strategy, we formulate the power consumption behavior of cus-
tomers as a repeated noncooperative game with incomplete information.
We provide an explicit characterization of unique Bayesian Nash equi-
librium strategy in terms of individual marginal utilities. The rational
behavior is also characterized in a communication scheme where smart
meters exchange consumption levels with neighboring meters. A local
algorithm that computes equilibrium consumption and propagates beliefs
is presented when the network is known. Simulation results show that
communication is beneficial for welfare and that power provider can
lower the peak-to-average ratio of total consumption by adjusting its
target profit ratio.

Index Terms— Noncooperative game theory, smart grid, distributed
demand side management, renewable energy.

1. INTRODUCTION

The matching of power production to power consumption is a complex
problem in conventional energy grids. This problem is exacerbated by the
introduction of renewable sources, which, by their very nature, exhibit
significant output fluctuations. This problem can be mitigated with the
introduction of a system of smart meters. Smart meters control the power
consumption of customers by managing the energy cycles of various de-
vices while also enabling information exchanges between customers and
the power provider as well as between customers themselves [1, 2]. The
web of information between customers’ meters, and between meters and
the power provider can be combined with sophisticated pricing strategies
so as to encourage a better match between power production and con-
sumption [3–9]. The effort of power providers to regulate the consump-
tion of end users is referred to as demand side management (DSM) [10].
In this paper, we study the rational consumer behavior in a repeated non-
cooperative game with incomplete information when the power provider
employs an adaptive pricing policy. The adaptive price depends on re-
newable source output and total power consumption, and hence incen-
tivizes customers with heterogeneous preferences to anticipate behavior
of others and be aware of their influence on price.

The provider regulates consumption by determining price policy pa-
rameters based on its estimate of consumption and renewable power gen-
eration (Sections 2.1 and 3.1). The provider broadcasts its policy and
estimate of renewable power generation to the consumers at the begin-
ning of the period. Customers maximize expected payoff that depends
on self preferences, total consumption and renewable power generation
with respect to public information and their beliefs on others’ preferences
(Section 2.2). We assume that the customer’s power control scheduler can
adjust the load consumption between time slots according to his prefer-
ences. That is, we are interested in modeling consumption behavior for
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shiftable appliances, e.g., electric vehicles, electronic devices, air condi-
tioners etc. [5, 6]. We explicitly characterize individual consumption at
each time with respect to self preference by using Bayesian Nash equi-
librium (BNE) as the solution concept when the preferences come from
jointly normal distribution (Section 3) – see [11,12] for a survey of game
theoretic models in DSM. The characterization shows the effects of ex-
pected renewable power output and pricing policy parameter on price.

In addition, we consider a communication scheme in which cus-
tomers exchange their consumption levels after each time slot with their
neighbors (Section 4). Similar to the cases in [7, 10], information ex-
change among entities is done via power control schedulers. For this
model, we explicitly characterize the equilibrium behavior of customers
and provide an algorithm to compute equilibrium and propagate beliefs
based on local information using the results from [13]. Finally, we pro-
vide numerical experiments exploring the behavior of welfare, consump-
tion, price, and provider’s realized profit with respect to population’s
preference distribution and price policy parameters in settings with and
without communication (Section 5). Numerical experiments show that
communication among neighboring users is beneficial to welfare when
the preferences are correlated. We further discuss how the pricing policy
can be used to reduce peak-to-average ratio or total consumption.

2. DISTRIBUTED DSM WITH RENEWABLE ENERGY

A power provider oversees a DSM model with N customers. Customers
each equipped with a power consumption scheduler are characterized by
their individual load consumption lih defined as the power consumed by
customer i ∈ N at time slot h ∈ H := {1, . . . , H}. Accordingly,
we represent the total consumption of the population at time slot h with
Lh :=

∑
i∈N lih. In order to be able to be responsive to changing condi-

tions in the environment, e.g. resource prices, consumption preferences,
the provider divides the day into K time zones t1, t2, . . . , tK . Specif-
ically, the time zone k is a batch of time slots starting at hs

k ∈ H and
ending at he

k ∈ H, i.e., tk := [hs
k, h

e
k). The time zones do not overlap,

that is, he
k−1 = hs

k for k ∈ {2, . . . ,K − 1} and hs
1 = 1 and he

K = H .

2.1. Power provider model

For a time slot h ∈ tk the total power consumption Lh results in the
power provider incurring a production cost of Ck(Lh) units. Observe
that the production cost function Ck(Lh) depends on the time zone k
and the total power produced Lh. When the generation cost per unit is
constant, Ck(Lh) is a linear function of Lh. More often, increasing loads
Lh result in increasing unit costs as more expensive energy sources are
brought online. This results in superlinear cost functions Ck(Lh) with a
customary model being the quadratic form

Ck(Lh) = κkL
2
h, (1)

for a given constant κk > 0 that depends on the day’s time zone k. The
cost in (1) has been experimentally validated for thermal generators [14]
and is otherwise widely accepted as a reasonable approximation [4, 10,
15]. This paper adopts the model in (1).

The provider utilizes an adaptive pricing strategy whereby customers
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are charged a slot-dependent price ph that varies linearly with the total
power consumption Lh. To incorporate renewables into the pricing strat-
egy we further introduce a random variable ωk ∈ R that depends on
the amount of power produced by renewable sources and set the per unit
power price at time slot h ∈ tk as

ph(Lh;ωk) = βk(Lh + ωk), (2)

where βk > 0 is a policy parameter to be determined by the provider. The
parameter βk may depend on the day’s time zone k. The random variable
ωk is such that ωk = 0 when renewable sources operate at their nominal
benchmark capacity. If realized production exceeds this benchmark the
provider agrees to set ωk < 0 to discount the energy price and share
the windfall brought about by favorable weather conditions. If realized
production is below benchmark the provider sets ωk > 0 to reflect the
additional charge on the customers. The specific dependence of ωk with
the realized energy production and the policy parameter βk, are part of
the supply contract between the provider and its customers.

The provider’s realized revenue at time slot h ∈ tk are obtained by
multiplying the total consumption Lh by the unit price in (2),

Rk(Lh) = Lhph(Lh;ωk). (3)

Further observe that the provider’s rate of return for the time slot is given
by the ratio Rk(Lh)/Ck(Lh).

A fundamental observation here is that the prices ph(Lh;ωk) in (2)
become known after the end of the time slot h. This is because prices
depend on the total power consumption Lh and the value of ωk which is
determined by the amount of renewable energy produced in the time zone
to which the slot belongs. Both of these quantities are unknown a priori.
Regarding the parameter ωk we assume that the provider uses a model on
the renewable power generation – see, e.g., [3] for the prediction of wind
generation – to estimate the value of ωk at the beginning of the time zone
k. The corresponding probability distribution Pωk is made available to
all customers at the beginning of the time zone. The provider’s goal is
to rely on this belief and on a model of consumer behavior to obtain a
target expected rate of return – see Section 3.1. Henceforth, we use Eωk

to denote expectations with respect to the belief Pωk and ω̄k := Eωk [ωk]
to denote the mean of the distribution Pωk .

2.2. Power consumer model

The consumption preferences of users are determined by constants gik >
0 that are possibly different across customers and time zones. When user
i consumes lih units of power at time slot h we assume that it receives
the linear utility giklih. For each unit of power consumed the provider
charges the price ph(Lh;ωk) which results in user i incurring the total
cost lihph(Lh;ωk). It also charges a quadratic penalty αkl

2
ih to discour-

age excessive consumption. Note that the constant αk may change across
time zones k but is the same for all consumers. The utility of user i is
then given by the difference between the consumption return giklih, the
energy cost lihph(Lh;ωk), and the overconsumption penalty αkl

2
ih,

uih(lih, Lh; gik, ωk) = −lihph(Lh;ωk) + giklih − αkl
2
ih. (4)

Using the expressions for prices in (2) and Lh we can write the payoff in
(4) as

uih(lih,l−ih; gik, ωk)

= −lih
[
βk

(∑
j∈N

ljh + ωk

)]
+ giklih − αkl

2
ih, (5)

where we have also rewritten the utility of user i as uih(lih, Lh; gik, ωk) =
uih(lih, l−ih; gik, ωk) to emphasize the fact that it depends on the con-
sumption l−ih := {ljh}j 6=i of other agents. Note that if the provider’s
policy price is set to βk = 0, the utility of agent i is maximized by
lih = gik/2αk. Thus, the overconsumption penalty results in users

consuming a finite amount of power even when power is free of charge –
see [15] for a similar formulation.

The utility of user i depends on the powers l−ih that are consumed by
other users in the current slot. These powers are unknown to user i. Fur-
ther note that the power consumptions l−ih of other users depend partly
on their marginal utilities g−ik := {gjk}j 6=i. These are assumed to be
also unknown to user i. Rather, we assume there is a probability distribu-
tion Pgk (gk) on the vector of marginal utilities gk := [g1k, . . . , gNk]T

from where self preferences are drawn. This probability distribution is
known to all agents. We further assume that Pgk is normal with mean
ḡk1 where ḡk > 0 and covariance matrix Σk,

Pgk (gk) = N
(
gk; ḡk1,Σk

)
(6)

Let the operator Egk signify expectation with respect to the distribution
Pgk and σk

ij := ((Σk))ij denote the (i, j)th entry of the covariance ma-
trix Σk. Having mean ḡk1 means that all customers have equal average
preferences in that Egk (gik) = ḡk for all i. If σk

ij = 0 for some pair
i 6= j, it means that the marginal utilities of these customers are uncor-
related. In general, σk

ij 6= 0 to account for correlated preferences due to,
e.g., common weather. We further assume that marginal utilities gk and
gl for different time zones k 6= l are independent.

The probability distributions Pωk and Pgk and the pricing parame-
ters αk and βk are common knowledge among users. The pricing pa-
rameters αk and βk are announced by the provider at the beginning of
the time zone. The renewable energy parameter ωk is unknown until
the end of the time zone but the provider’s belief Pωk on this parame-
ter is also announced. The probability distribution Pgk in (6) is known
to all agents by assumption. Customer i also knows the realized value
of his utility marginal yield gik. His goal is to maximize the utility
uih(lih, l−ih; gik, ωk) in (5) given its partial knowledge of the renewable
energy parameter ωk and the power consumptions l−ih of other agents.
This maximization requires a model of behavior for other agents that
comes in the form of a BNE that we introduce in the following section.

3. CUSTOMERS’ BAYESIAN GAME

User i’s load consumption at time h ∈ tk is determined by his belief
qih and strategy sih. The belief of i is a conditional probability distribu-
tion on gk given gik, qih(·) := Pgk (·|gik). In order to second guess the
consumption of other users, user i forms beliefs on their marginal util-
ities given the common prior Pgk and self marginal utilities up to time
zone k {gim}m=1,...,k. Observe that self marginal utilities of previous
time zones {gim}m<k are not relevant to belief at time zone k as they
are independent from the marginal utilities at time zone k. Further note
that user i’s belief is static over the time horizon as he receives no other
information about the marginal utilities of others. User i’s load consump-
tion at time h ∈ tk is determined by his strategy which is a complete
contingency plan that maps any possible local observation that he may
have to his consumption. In particular, user i’s best response strategy is
to maximize expected utility with respect to his belief qih given strategies
of other customers s−ih := {sjh}j 6=i,

BR(gik; s−ih) = argmax
lih

Eωk

[
Egk

[
uih(lih, s−ih; gik, ωk)

∣∣ gik]].
(7)

Since the utility of customer i is strictly concave quadratic function of lih
as per (5), the same is true for his conditional expected utility which we
maximize in (7). Hence, we can rewrite the best response strategy in (7)
by taking the derivative of the conditional expected utility with respect to
lih, equate the resultant to zero and solve for lih,
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BR(gik; s−ih) =
1

2(βk + αk)

(
gik − βk

(
ω̄k +

∑
j 6=i

Eωk [Egk [sjh
∣∣ gik]]

))
.

(8)

A BNE strategy profile s∗ = {sih}i∈N ,h∈H at time h ∈ tk is a strategy
in which each customer maximizes expected utility with respect to his
own belief given that other customers are playing with respect to BNE
strategy. Equivalently, BNE strategy is one in which users play best
response strategy as per (8) to best response strategies of other users –
see [13, 16] for a detailed explanation. As a result, the BNE strategy is
defined with the following fixed point equations

s∗ih(gik) = BR(gik; s∗−ih) (9)

for all i ∈ N , h ∈ tk, and gik. Using the definition in (9), the following
result characterizes the unique linear BNE strategy at h ∈ tk.

First we define the pairwise inference matrix S(Σk) as,

[[S(Σk)]]ii = 0, [[S(Σk)]]ij = σk
ji/σ

k
jj ∀i ∈ N , j ∈ N \ i (10)

Theorem 1 1 Consider the game defined by the payoff in (5) at time h ∈
tk. Let the information given to customer i be his marginal utility gik,
the common normal prior on marginal utilities Pgk as per (6) and prior
on renewable power generation Pωk . Then the unique BNE strategy of
customer i is linear in signals ω̄k, ḡk, gik and is given by,

s∗ih(gik) = aik + bikgik (11)

where ak = [a1k, . . . , aNk]T and bk = [b1k, . . . , bNk]T are given by

ak =
ḡk − ω̄kβk

2(αk + βk)((N − 1)ρk + 1)
1− ḡk

ρk
βk

d(Σk), bk =
ρk
βk

d(Σk),

(12)

and

ρk =
βk

2(βk + αk)
, d(Σk) = (I + ρkS(Σk))−11 (13)

Theorem 1 shows that there exists a unique BNE strategy that is linear in
self marginal utility gik. This is a direct consequence of the fact that the
best response strategy (8) is a linear function of strategies of other users
and the normal prior on marginal utilities in (6). From equilibrium action
in (11), we observe that the estimated effect of renewable power ω̄k has
a decreasing effect on individual consumption. This is expected since in-
creasing ω̄k implies an expected increase in the price which lowers the
incentive to consume. Observe that the BNE strategy (11) does not con-
tain any time slot dependent parameter hence the consumption level of an
individual is fixed for all h ∈ tk. This is due to the fact that users do not
receive any new information within a time zone.

Further observe that the strategy coefficients aik and bik do not de-
pend on information specific to customer i. A consequence of this obser-
vation is that the power provider knows the strategy functions of all the
users via the action coefficient equations in (12). On the other hand, the
realized load consumption lih is a function of realized marginal utility
gik, i.e., lih = s∗ih(gik). Hence, knowing the strategy function does not
imply that the provider knows the consumption level of each other. Nev-
ertheless, the provider can use the BNE strategies of users to estimate the
expected total consumption in order to compute its expected rate of return
as we present in the following section.

3.1. Producer adaptive pricing

The provider determines its policy parameter βk so that it expects to
achieve a target rate of return r∗k. The expected rate of return ratio is

1Proofs of results in this paper are available in [17].

obtained by dividing expected revenue with expected cost where the cost
and the revenue are defined as in (1) and (3), respectively. Given that
customers consume with respect to the BNE strategy {σ∗ih}i∈N ,h∈tk , the
provider solves the following equation for βk to attain the desired profit
ratio at h ∈ tk,

E[Rh(L∗h(βk))]

E[Ch(L∗h(βk))]
= r∗k (14)

where L∗h(βk) :=
∑

i∈N s
∗
ih(gik;βk) is the total load when customers

use BNE strategy. We include βk as a parameter at customer i’s BNE
strategy to indicate that from the perspective of the provider, the BNE
strategy of agent i is a function βk. Using (1) and (3), the above equation
can be equivalently be written as follows

(κkr
∗
k − βk)E[(L∗h(βk))2]− βkω̄kE[L∗h(βk)] = 0 (15)

Given that customers follow BNE strategy in (11), the provider can com-
pute the expectations of total load and total load squared in (15) – see
[17]. The expected rate of return is the same at all time slots within a
time zone due to the fact that BNE strategy profile is fixed within a time
zone.

4. REPEATED GAME FOR COOPERATING CUSTOMERS

We consider a communication scheme where power control schedulers
are interconnected via network represented by a graph G(N , E) and cus-
tomer i observes consumption levels of his neighbors in the network
Ni := {j ∈ N : (j, i) ∈ E} after each time slot. Given the com-
munication setup, the information of customer i at time slot h ∈ tk con-
tains his preferences gi,1:k := {gim}m=1,...,k and the consumption of his
neighbors up to time h − 1, lNi,1:h−1 := {ljt}j∈Ni,t=1,...,h−1, that is,
Iih = {gi,1:k, lNi,1:h−1}. We assume that the information exchange is
among power consumption schedulers which keeps the information pri-
vate. We further assume that the schedulers know the network structure.

Upon observing actions of his neighbors’ consumption, i learns about
the consumption preferences of other users which he can use to better
estimate the total consumption in future steps. For this customer i keeps
an estimate of the marginal utilities of all the customers. First, define
the marginal utility vector augmented with mean ḡk, g̃k := [gT

k , ḡk]T .
The mean and error covariance matrix of i’s belief qih at time h ∈ tk
is denoted by E[g̃k|Iih] and Mi

g̃kg̃k
(h) := E[(g̃k − E[g̃k|Iih])(g̃k −

E[g̃k|Iih])T ], respectively. Next result shows that at each time slot of the
game, strategies of users are linear weighting of their mean estimate of
g̃k where the weights are obtained by solving a set of linear equations.

Theorem 2 Consider the repeated Bayesian game defined by the pay-
offs in (5). Let the information of customer i at time h ∈ tk be Iih =
{gi,1:k, lNi,1:h−1}. Given the normal prior on marginal utilities in (6),
the mean estimate of user i at time h ∈ tk can be written as a linear com-
bination of g̃k, that is, E[g̃k|Iih] = Tihg̃k where Tih ∈ RN+1×N+1

for all h ∈ tk, and the unique equilibrium strategy for i is linear in his
estimate of the marginal utilities,

s∗ih = vT
ihE[g̃k|Iih] + rih (16)

where vih ∈ RN+1×1 and rih ∈ R are strategy coefficients. The strategy
coefficients are calculated by solving the following set of equations

vT
ihTT

ih + ρk
∑

j∈N\i

vjhTT
ihTT

jh =
ρk
βk

ei ∀i ∈ N , (17)

rih + ρk
∑

j∈N\i

rjh = −ρkω̄k ∀i ∈ N (18)

where ρk := βk/(2(βk + αk)) and ei ∈ RN+1×1 vector has all zeros
except one in the ith element.
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Algorithm 1 Sequential Smart Grid Game Filter for customer i
Require: Posterior distribution on g̃k at time slot hs

k ∈ tk and
{Tj,hs

k
,Mj

g̃kg̃k
(hs

k)}j∈N according to distribution in (6).
for h ∈ tk do

[1] Equilibrium strategy: Solve {vjh, rjh}j∈N in (17) and (18).
[2] Play and observe: Compute lih = vT

ihE[g̃k

∣∣ Iih] + rih and
observe lNi,h.
[3] Observation matrices: Construct {Hj,h}j∈N

HT
jh := [vT

mj1,hTmj1,h; . . . ; vT
mjd(j),t

Tmjd(j),h].

[4] Gain matrices: Compute {Kj
g̃k

(h)}j∈N

Kj
g̃k

(h) := Mj
g̃kg̃k

(h)Hj,h

(
HT

j,hMj
g̃kg̃k

(h)Hj,h

)−1

[5] Estimation weights: Update {Tj,h+1,M
j
g̃kg̃k

(h+ 1)}j∈N

Tj,h+1 = Tj,h +Kj
g̃k

(h)
(
HT

j,h −HT
j,hTj,h

)

Mj
g̃kg̃k

(h+ 1) =Mj
g̃kg̃k

(h)−Kj
g̃k

(h)HT
j,hMj

g̃kg̃k
(h).

[6] Bayesian estimates: Calculate E[g̃k

∣∣ Iih+1]

E[g̃k

∣∣ Iih+1] = E
[
g̃k

∣∣ Iih]+Ki
g̃k

(h)
(
lNi,h − E[lNi,h

∣∣ Iih]
)
.

end for

Theorem 2 presents how i computes his BNE strategy at each time
slot which is integrated with belief propagation. Beliefs are propagated
using sequential LMMSE estimates and hence the beliefs remain Gaus-
sian and the mean estimates are linear combinations of private signals at
all times. In order to compute the BNE strategy, user i also needs to keep
track of beliefs of others as we show in Algorithm 1.

In Algorithm 1, we provide a sequential local algorithm for i to com-
pute its consumption level and propagate his belief. User i initializes his
belief on g̃k at the beginning of the time zone according to the preference
distribution in (6). It also determines the estimation weights Tj,hs

k
and

error covariance matrix Mj
g̃kg̃k

(hs
k) at the beginning of time zone for

j ∈ N . Note that user i does not need any local information from other
users in this initialization. Using the estimation weights {Tj,hs

k
}j∈N ,

it can locally construct the equations in (17) and (18), and solve for the
strategy coefficients {vjh, rjh}j∈N . In Step 2, i consumes the amount
based on his local estimate of the augmented preferences – see (16).
Once the consumption occurs, it is transmitted between neighbors. At
this point, if the upcoming time slot belongs to the same time zone as the
current time slot, i propagates his belief on the marginal utilities – see
Remark 1. Propagation of his belief starts by computing observation ma-
trices of all the users in Step 3 with the use of its knowledge of estimation
weights, strategy coefficients and network. Next, these observation ma-
trices are used in computing the gain matrices in Step 4 for all the users.
In Step 5, i propagates the estimation weights Tj,h+1 and error covari-
ance matrix Mj

g̃kg̃k
(h+ 1) for all the users in the network. These com-

putations do not require the local observations of other users given the
knowledge of the network topologyG. Finally in Step 6, i propagates his
mean estimate E

[
g̃k

∣∣ Iih+1

]
by the use of his local observation lNi,h.

Remark 1 The belief propagation steps in Algorithm 1 are only valid for
sequential time slots that are in the same time zone. If h+ 1 ∈ tk+1 then
there is new prior Pgk+1 on the preferences.

5. NUMERICAL EXPERIMENTS

We evaluate the performance of the smart-grid model with and without
communication and effects of desired profit ratio r∗ through numerical
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Fig. 1. Effect of target profit ratio on performance metrics welfare
(a), total consumption Lh (b), price ph(L∗h;ωk) (c), and realized profit
Rk(L∗h)/Ck(L∗h) (d). L∗h decreases significantly with increasing r∗.

experiments. We let welfare defined as the sum of individual utilities,
total consumption L∗h, price in (2) and realized profit ratio defined as
rh := Rk(Lh)/Ck(Lh) be the performance metrics. There are three
time zones K = 3 in a H = 24 hour day. The time zones are as given
by t1 = [1, 8], t2 = [9, 17] and t3 = [18, 24] with corresponding mean
preferences ḡ1 = 20, ḡ2 = 40 and ḡ3 = 25. We choose the covariance
matrix Σk to be identical for all time zones with σii = 8 and σij = 4 for
all i ∈ N , j ∈ N\i. There areN = 30 users on a geometric network in 5
mile×3 mile area with a connection threshold of 1.5 miles. Each user has
the payoff in (5) with the decay parameter αk = 1.5 for k = 1, 2, 3. The
cost function of the power provider is as given in (1) with the parameter
κk = 2 for k = 1, 2, 3. We let the renewable power effect on price
be normal with mean ω̄k = 0 and variance σωk = 1 for k = 1, 2, 3,
respectively. Figs. 1(a)-(d) illustrate the effect of desired profit ratio r∗k on
welfare, total consumption, price and realized profit, respectively. Each
line in Figs. 1(a)-(d) corresponds to an average of five runs with a target
profit ratio fixed across time zones, i.e., r∗k = r∗ for all k. Each line is
color coded with respect to r∗ as shown by the legend in Fig. 1(d). Solid
lines indicate performance without any communication, and dashed lines
are performance with communication where users utilize Algorithm 1.

Observe that in Figs. 1(a)-(d) at the beginning of each time zone, the
behavior is identical with or without communication as it should. The
welfare is positively affected when there is communication in all the sce-
narios in Fig. 1(a). Note that the effect of communication differs based
on the value of ḡk. Mean preference has a significant effect on all of the
performance metrics. We observe that in the peak time zone total con-
sumption and price is higher in Figs. 1(b)-(c), respectively. The increase
in price is expected in peak hours with a jump in L∗h. Increase in price
does not automatically translate to an increase in realized profit ratio in
Fig. 1(d) since the cost also grows with total consumption.

In Fig. 1(c), we observe that price across different values of desired
profit ratio does not change significantly. This is because users adjust
by decreasing consumption in Fig. 1(b). In Fig. 1(a), we observe that
welfare decreases when r∗. Finally, we observe that realized profit ratio
align with the target profits in Fig. 1(d). The peak-to-average ratio in
total consumption is not altered when desired profit ratio is fixed over all
time horizons in Fig. 1(b) for different r∗. As a policy to reduce peak-to-
average ratio, power provider might choose high profit ratio in the peak
time zone k = 2 and low profit ratio when demand is low. Specifically,
from Fig. 1(b), we can see that peak-to-average ratio is lowest when
r∗1 = 1, r∗2 = 1.4 and r∗3 = 1.2.
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