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ABSTRACT

Persistent homology has become one of the most popular
tools used in topological data analysis for analyzing big data
sets. In an effort to minimize the computational complexity
of finding the persistent homology of a data set, we develop
a simplicial collapse algorithm called the selective collapse.
This algorithm works by representing the previously devel-
oped strong collapse as a forest and uses that forest data to
improve the speed of both the strong collapse and of per-
sistent homology. Finally, we demonstrate the savings in
computational complexity using geometric random graphs.

Index Terms— Simplicial complex, persistent homology,
simplicial collapse, topological data analysis, strong collapse

1. INTRODUCTION

Topological data analysis, particularly the tools of homology
and persistent homology [3, 9] from algebraic topology, has
found a wide variety of applications as a data analysis tech-
nique, including sensor network coverage [4, 6, 11, 21, 25],
gene expression in cancer data [19], dynamics in biological
systems [10], astronomical data [23], and social networks [17,
24]. The fundamental idea behind these tools is that a data set
has a shape, which can inform a user on some of its global
properties. Homology gives an algebraic description of topo-
logical features of the data, which are coarse geometry-free
structures such as holes or voids in the data. These features
may be viewed as generalizations of connected components
(which are the result of many classification algorithms) to
higher orders. It is also well known that there is no meaning-
ful clustering algorithm [14] without determining the scale at
which the data should be analyzed. When such an a priori
scale is not available, it is advisable to use hierarchical clus-
tering algorithms [18] which give a summary over all scales.

An analogue of this generalization to higher order fea-
tures, which gives a summary of homology over all scales,
is persistent homology. Owing to the importance of such
analysis especially for large data sets, a fair amount of at-
tention has been paid to efficient computation of homology
[2,5,22,24,25] and to persistent homology [15,16] which has
been shown to have the same complexity as that of computing
homology at a single scale [15]. The worst case complexity
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of'this is on the order of matrix multiplication time of a matrix
with size equal to the number of simplices in a complex.

It is widely believed that the current state of the art com-
plexity in the number of simplices is the best possible. As
a result, much research has gone into developing techniques
which might reduce the number and degree of the simplices,
paralleling the efforts of dimension reduction in the field of
machine learning. These techniques range from computing
the persistent homology of some intelligently selected sub-
sample of the data [7] to collapsing the data in ways that pre-
serve its topology [1,16,22,24,25]. These collapsing methods
come in several forms. One branch of study focuses on com-
puting discrete Morse functions on the simplicial complexes
in the persistence computation. [16] While the collapsed com-
plexes yielded from this method are theoretically small, find-
ing optimal Morse functions is known to be NP-hard in gen-
eral. [13] Furthermore, there is no guarantee that the local
structure about the topological features will be preserved.

Another method, introduced in [24], collapses a complex
with the guarantee that cycle lengths are preserved: the tight-
est subset of the data around any topological feature is kept in-
tact, thus allowing feature-localization algorithms to discover
the original position of the features. Moreover, the algorithm
can be distributed [25], and because persistence utilizes a par-
ticular family of simplicial complexes called Rips complexes,
each node only needs knowledge of its immediate neighbors
in the data in order to execute the collapse. Applying this
collapsing algorithm to the persistent homology of a data set
is our focus. In contrast to the parallel research on applying
Morse theoretic collapses to the persistence algorithm [16],
we introduce a new method here that uses the strong collapse
to achieve 1) a distributed algorithm which can leverage the
power of massively parallel computing architectures, and 2)
automatically localizes the persistent features in the data set.

This paper is organized as follows: in section 2, we in-
troduce the basics of the mathematics underlying persistent
homology and the strong collapse. In section 3, we construct
the algorithm and prove that the persistent homology of the
collapsed filtration is the same as that of the original data.
In section 4, we implement the algorithm and demonstrate its
utility to persistence over the strong collapse. Finally, we pro-
vide a conclusion and future directions in section 5.



2. PRELIMINARIES

This section introduces some background concepts for algo-
rithm used in this paper. These concepts include the building
blocks of simplicial complexes and homology, followed by an
introduction to persistence computations, and finishing at the
definition of the strong collapse used to reduce the data.

2.1. Simplicial Complexes and Homology

Simplicial complexes (often referred to as complexes) are the
basic building blocks of algebraic topology. A complex can
be formally defined as any set of sets closed under the subset
operation. Geometrically, a simplicial complex is a general-
ization of a graph that includes not only vertices and edges,
but also higher-dimensional structures such as triangles, tetra-
hedra, and higher order convex hulls of vertices in an ambient
space. A simplicial complex may also be viewed abstractly
as a special case of an hypergraph. Each of these structures
is called a simplex, and the number of vertices in a simplex
determines its dimension: A vertex is a 0-simplex, an edge is
a 1-simplex, and the convex hull of n+1 points will be called
an n-simplex, indicating it has dimension n.

Homology is a linear algebraic tool that takes as its input
a simplicial complex X and outputs a sequence of real vector
spaces {Ho(X), H1(X),---}. Of specific interest are the
Betti Numbers {5y(X), 51(X), -} of X, where 3;(X)
rank(H;(X)). While 8y(X) counts the number of connected
components in X, the i*" Betti number counts the number of
i + 1 dimensional holes: S;(X) yields the number of holes
in X, B2(X) counts the 3-dimensional voids, and higher
Betti numbers count higher dimensional cycles. The details
of these computations are involved, and so are not included
here, but any introductory algebraic topology text contains a
good introduction. The authors suggest Hatcher [12], which
is freely available at the authors’ website.

2.2. Persistent Homology

Persistent homology is a higher order equivalent of hierar-
chical techniques used for clustering. It takes as its input a
nested sequence of simplicial complexes, and outputs a sum-
mary of topological features at all scales. In fact, persistent
Hy(X) gives the same result as single-linkage clustering. A
very common approach is to treat the data as a point cloud in
some ambient metric space. Then, for any non-negative real
number €, a simplicial complex (known as the Vietoris-Rips
complex) X € is constructed using the points in X as vertices,
such that the pairwise distance between vertices in each sim-
plex is no more than €. As in the hierarchical clustering set-
ting, € is allowed to increase from 0 to co, but instead of ob-
serving only Hy(X) over that interval, we also observed the
other homology spaces and how they change with €. It imme-
diately follows from the definition that for e < §, X¢ C X7,
Since our data set X is made up of a finite number of points,
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there are a finite number of pairwise distances between points
in the data, and we can order them 0 < €7 < €5 < - -+ < €.
Hence, we observe a series of inclusions, called a filtration

e -1 e 37 e It
e XG-1 s XS s X s L

This, in turn, induces a series of linear maps on the ho-
mology spaces of each complex in every dimension

i1 i+l

...H*(X€j—1) L>H*(Xej) i>H*(Xej+l)l**>.“

The persistent homology of a data set takes as input the
data set and outputs a persistence diagram. This persistence
diagram helps to keep track of the existence of persistent fea-
tures in the complex over the range of the parameter . A
homology class v € H,(X*) is said to be born at ¢ if it is in
the cokernel of °~! in the persistence diagram. It is said to
persist from time ¢, to time €1 if it is not in the kernel of 4.
Finally, it dies at the minimal d for which i¢o - - - 04 (v) = 0.
The diagram can visually represent these births and deaths in
many ways. [3] One popular visualization is the barcode, a
chart whose z-axis is the range of €, and whose y-axis is dis-
crete, having one entry for each persistent homology class.
Then, we display a bar for each class v which runs horizon-
tally from ¢, to €4. By observing those features which persist
for the largest parameter range ¢; — €, we can infer a great
deal about the topology of the data.

2.3. Strong Collapse

The final technique required to describe the new algorithm
presented here is the strong collapse developed in [24, 25].
This collapse is based on a novel concept of “relevance” of
the nodes, and has a simple implementation. In general the
strong collapse requires the knowledge of all the simplices in
the complex, and in some cases, these are determined by the
problem at hand [17,24]. But it is usually the case we are
only presented with a point cloud, and a filtration using Rips
complexes is generated as described in the previous section.
Computing all the simplices (cliques) in the Rips complex is,
however, very expensive. Fortunately, the relevance of the
nodes can be computed directly (described below) without the
need to compute all the cliques [25]. The strong collapse also
has the added advantage of requiring only the local informa-
tion, thus facilitating parallel and distributed computations.
In the distributed strong collapse, each node broadcasts its
neighbor set to each of its neighbors. Every node then com-
pares its own neighborhood to that of each of its neighbors. If
its neighbor set contains the neighborhood of one of its neigh-
bors, it tells that neighbor to turn off, thus removing it and all
of its incident simplices from the simplicial complex. It can
be shown that the collapse map, and the inverse inclusion, in-
duce isomorphisms in homology [1,24]. Each node adjacent



to a deleted node then updates its neighbor set, and the col-
lapse iterates again and again until it converges. This collapse
has the benefit of not only preserving the topology of the sim-
plicial complex, but also preserving the shortest generator of
each homology class in the original complex. For example,
when computing H;(X), the shortest path around every hole
is preserved. This allows hole-localization algorithms to find
the tightest bounds around topological features in the original
data using only the collapsed data.

3. SELECTIVE COLLAPSE

Given a persistence diagram, we can exploit the techniques
outlined in the previous section to build a new structure,

i1

i1 i

y
o XE1 Y X Y X

A e

xaa xS

fj+1

Xeit

[

The dotted maps are those induced by composing f*
C oi* oin, where C' : X — X is the strong collapse map
and in : X — X is the inclusion. Each square in the above
diagram commutes by construction, and the induced maps on
homology by the vertical maps are isomorphisms, as stated
in Section 2.3. Thus, if a generator exists at H,(X-*) and
persists to H,. (X ), then its image in H, (X -1) will persist
to H, (X ¢ ). Likewise, any class not persisting above will not
persist below. Hence, the persistent homology of the original
data above is isomorphic to the persistent homology of the
reduced data below.

However, there is no guarantee that vertices collapsed by
C : X% — X< will be collapsed by C' : X¢i+1 — X€i+1,
and vice-versa. Hence, these dotted maps are not necessarily
inclusions, which is a prerequisite for traditional persistence.
However, they are simplicial maps. Thus, the bottom row is
computable if we can compute persistence for a sequence of
general simplicial maps. Such a technique has been recently
presented in [§].

Unfortunately, reducing the complex at each stage is time-
consuming, thus necessitating a careful use of the collapse
at one stage to efficiently compute the collapse at the next.
Given a complex X and the strong collapse of that complex
C:X— X¢, we represent the collapse with a forest, or col-
lection of directed trees, denoted F'°. The nodes in this forest
correspond to the vertices of the simplicial complex X ¢, and
the collapsed complex X ¢ is the subcomplex induced by the
root nodes of the forest. Each node in the forest is a parent to
all the nodes which collapse to it.

3.1. Selective Collapse Algorithm

In constructing the algorithm, we justify each step as it
is presented. For ease of notation, we also define the e-
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neighborhood N.(v) = {w € X|d(v,w) < e} for every
point v € X. We can assume, without loss of generality, that
cach inclusion in the filtration corresponds to the addition of
a single edge in the uderlying graph of the complex. The al-
gorithm begins by collapsing the first complex in the filtration
X¢1, and proceeds by distributively modifying this forest at
each stage. Every node v € F'“ is either a root (v € R(F*°))
in the forest or a non-root (v € NR(F*<)). In the case that
v € NR(F), v has a parent v,. The algorithm continues
to make the assumption that the starting forest represents a
strong collapse, and that one edge is then added to the parent
complex X to obtain X “+'. Then, to transform the forest
Fe — Fe+1 we add the new edge to X to get X“+!, and
propogate the following algorithm at each node v, starting
with the endpoints of the new edge, and working our way
away from the new edge:
Receive w : NR(F) — R(F) transition notification
from neighbor
ifv € NR(F<) then
ifw € N,, then
v remains unchanged
else
v : NR(F) — R(F°<), notifies neighbors w €
N, of change
end if
else
Continue. Roots do not change state.
end if
After the algorithm has been completed, each node which
is still a non-root maintained its status by either not having its
neighborhood disturbed, or by testing any new roots entering
its neighborhood to see if its parent also contained the root it
its own neighborhood. In so doing, every non-root is domi-
nated in the network, and as such, the resulting forest F“+!
is a (partial) strong collapse of X “+1. It may not be the com-
plete strong collapse C' : X+ — X€i+1 in that there still
may be collapsible nodes in the root set of the resulting forest.
So, we take the final step of strong collapsing the remaining
subcomplex to obtain X+, The collapse, however, operates
on a subcomplex of X “+1, and therefore must complete far
fewer computations to achieve the complete collapse.

4. SIMULATION RESULTS

In this section, we demonstrate the utility of the proposed se-
lective collapse algorithm using an illustrative example of the
Rips filtration of random points in a plane. A set of points V'
are chosen from a uniform distribution on a unit square, and
a sequence of geometric graphs G(V/ €) is generated using an
increasing sequence of values for e. A geometric graph with
parameter € contains an edge (v1,v2) whenever the distance
between vy and vy is less than or equal to €, and therefore,
the sequence GV, €) has the property that G(V,€1) is a sub-
graph of G(V, e2) whenever €; < e5. An example sequence



Fig. 1. The left column shows the sequence of geometric
graphs obtained using increasing value for the parameter e,
along with the inclusion maps. The problem of interest is
to compute the persistent homology of the filtration obtained
using the corresponding flag complexes. The right column
shows the collapsed complexes. Given the first collapsed
complex, Section 3 presents an efficient algorithm to com-
pute the next reduced complex along with the simplicial map

1.

is shown in Figure 1. The filtration we consider here is the
sequence of the Rips complexes of the geometric graphs.

Figure 1 shows a sequence of the graphs underlying the
full and collapsed complexes in one run of the experiment.
Note that the useful properties of the strong collapse that it
preserves homology and shortest cycles are both clear in the
examples found in figure 1. Even though the sequence of orig-
inal complexes forms a filtration, note that the sequence of
collapsed complexes does not. However, the simplicial map
induced between the complexes is computed using the col-
lapse forests described in Section 3.

The algorithm described in Section 3 also provides an ef-
ficient way to compute the sequence of collapsed complexes.
Figure 2 demonstrates the utility of this algorithm by compar-
ing the time required to compute strong collapse entirely for
each complex without utilizing the information from the pre-
vious collapses. The figure shows the ratio of the time taken
for selective collapse 7. by algorithm given in Section 3 to
that taken for collapsing the entire complex 7'r. The compu-
tations used to generate these ratios are, in fact, centralized.
This figure shows that we see significant reductions in com-
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Fig. 2. Figures shows the ratio of the time taken by the al-
gorithm presented here to that taken for collapsing the entire
collapse for each step in the filtration. As seen, the ratio de-
creases with increasing number of nodes, a desirable feature
for algorithms designed for large data sets.

plexity, even in the centralized case. When the geometric ran-
dom graph has 120 nodes, the algorithm runs about 15 times
faster than if the entire complex is collapsed at each stage in-
dividually. The primary feature about the algorithm is that
this ratio decreases as the number of data points increases,
suggesting that for large data sets, the algorithm potentially
provides a significant increase in performance. It should also
be noted that the degree to which the collapse can be formed
depends largely on the specific type of complexes. The spe-
cific purpose of these experiments is to show that a collapse
obtained for a complex may be exploited to efficiently col-
lapse a bigger complex into which it is included.

5. SUMMARY AND CONCLUSION

We proposed an algorithm, called the seclective collapse,
which speeds up the computation of persistent homology, a
tool with wide and various applications in topological data
analysis. We presented the framework of collapsing the
complex at each step and utilizing the persistence algorithm
proposed in [8] to make the computations tractable. We rep-
resented the strong collapse with a forest, and used that infor-
mation to ease the processing of persistence across collapsed
complexes. We also outlined the distributed computations
used to execute the selective collapse algorithm, and proved
that the resulting forest corresponds to a strong collapse.
Furthermore, we showed through simulations on geometric
random graphs that the selective collapse algorithm is a faster
method for collapsing the simplicial complexes in a persis-
tence diagram, while maintaining all pertinent topological
information within the complex. Finally, we showed that the
collapse exhibits a trend towards greater efficiency with and
increased number of data points, thus displaying the potential
for this method in analyzing big data sets.
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