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ABSTRACT

Anomaly detection on dynamic real-world networks such as

large caller networks and online social networks is a very

difficult problem, analogous to looking for a needle in a

haystack. This paper considers detecting churners in a 3.7

million mobile phone network. The two main issues are de-

signing fast and efficient features and classifiers. We discuss

both in this paper. We associate every caller in the network

with an activity vector and an affinity graph, and our features

are derived from activity levels computed from subgraphs of

the affinity graph. These features reflect the graph-dependent

nature of the problem. To compute these networks expedi-

tiously, we extend as integral affinity graphs the concept of

integral images. Our anomaly classifier is a cascaded classi-

fier with stages that combine naive Bayes and decision tree

classifiers. Simulations with a 3.7 million cell phone user

network illustrate an anomaly classifier that reaches a false

alarm rate of 0.8% with a churn detection rate of 71%.

Index Terms— anomaly detection, large-scale dynamic

networks, integral image, integral affinity graphs, cascaded

classification

1. INTRODUCTION

Anomaly detection on large user networks is complicated not

only by the computational issues imposed by the size of the

data, but also by similarities between anomalous and non-

anomalous behavior. For mobile service providers with mil-

lions of subscribers, isolating the “churners” (the small per-

centage of customers who will drop their carriers) is a chal-

lenging problem, especially for customers that do not have a

fixed period service contract that commits them to the service

provider. Carriers would like to identify potential churners

before they actually churn; in this way, they can better target

advertising and design incentives to prevent or compensate

for decreases in their consumer base.

In this paper, we are interested in detecting churners be-

fore the fact in a network of 3.7 million prepaid cell phone

users. Our goal is to design a classifier that can flag these
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potential churners. In the literature, churn detection has been

approached via signal processing techniques such as Kalman

filtering [1] as well as machine learning [2], for example. In

this paper, we seek to use the network structure of the data

to train and test classifiers to identify churners. Anomaly de-

tection for networks has been studied in [3, 4], both of which

use neighborhoods of vertices to detect anomalies. In [3],

neighborhoods in bipartite graphs are explored via random

walk-type methods to identify vertices that participate in mul-

tiple non-overlapping neighborhoods. In [4], weighted adja-

cency matrices for localized subgraphs are used to compute

outlier statistics corresponding to anomalies in networks with

up to 1.6 million vertices. Anomaly detection for identifying

faces in images with a cascaded classifier is discussed in [5].

We address our problem of churn detection as follows. We

first develop a graph representation of the dataset where ver-

tices represent callers and edges connect callers who call each

other. This graph structure is one of the key ingredients of

our method. Secondly, we develop a set of fast and efficient

features. For a network vertex A, we start by considering a

16-dimensional activity row vector that collects several usage

statistics between a caller and its neighbors. Then, we con-

struct samples of size M for each of the neighbors of A and

for each of the neighbors of neighbors of A via a snowball

method (see Section 3). These M callers form a subgraph

that we refer to as the affinity graph of A, with an associ-

ated M × 16 activity matrix consisting of the activity vectors

of its vertices. We have tested our classifiers with M = 20,

30, 40, 50, and 100. Next, we construct an expanded set of

features considering subgraphs of the affinity graph, and we

compute activity vector sums for the callers within each sub-

graph to get the subgraph activity. We use the differences be-

tween subgraph activities as the features to classify vertex A.

To expedite feature computation, we adapt the concept of

integral images from [5] to allow quick computation of sub-

graph activities and their differences. We use these features

to build a cascaded classifier to decrease the false alarm rate.

The rest of the paper is as follows. We present the net-

work construction in Section 2. In Section 3, we define our

feature set and extend integral images to arbitrary networks.
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Sections 4 and 5 discuss a cascaded classifier implementation

with experimental results. We conclude in Section 6.

2. NETWORK CONSTRUCTION

We have available 11 consecutive months of cell phone activ-

ity for a caller network with over 3.5 million callers in each

month. In this paper, we consider only the data for the months

January and February 2009, each with 3.7 million callers. We

construct networks for these two months of data and use the

first month for training and the second month for testing the

anomaly classifier. The networks for January and February

are denoted by G1 = (V1, E1) and G2 = (V2, E2) respec-

tively, where Vt is the set of vertices and Et is the set of undi-

rected edges, t = 1, 2. The vertex set Vt includes all callers of

the network at month t that make at least one in-network call

in month t. An edge between two callers in Vt exists in Et if

there is at least one call between them in month t.

3. SUBGRAPH-ACTIVITY BASED FEATURES

We first describe the activity vectors associated with each

caller in our network and the subgraph-activity features we

compute. Then we extend the concept of integral images

from [5] to graphs. We describe how we extend this concept

first to trees and then to networks of arbitrary structure. We

call the result the integral affinity graph.

Activity Vectors and Features. We associate four classes

of activity to every caller A ∈ Vt: calls initiated by A to an in-

network user B ∈ Vt; calls received by A from an in-network

user B ∈ Vt; calls to an out-of-network user C /∈ Vt; and,

lastly, calls received from an out-of-network user C /∈ Vt. For

each of these possibilities, we account for the corresponding

number of calls, total call time, total number of SMS mes-

sages, and the number of callers. The resulting activity vector

of dimension 16 is recorded for every A ∈ Vt.

In addition, each caller A ∈ Vt has an associated affinity

graph, denoted by GA = (VA, EA), VA ⊂ Vt, EA ⊂ Et.

The affinity graph for caller A is constructed by performing a

snowball sample [6]. First, A is added to vertex set VA. Then,

we perform snowball sampling to collect its neighbors, which

we call the first-wave neighbors. If the target sample size M
has not yet been reached, we snowball sample again to col-

lect the neighbors of the first-wave neighbors, which form the

second-wave neighbors. We continue in this manner until M
vertices have been chosen [6]. We collect the activity vectors

in VA to form an M × 16 activity matrix UA associated with

caller A. As discussed in [7, 8, 9, 10, 11], sampled networks

can preserve and discover global network properties such as

degree distributions. In addition, [11] shows that even biased

estimates derived from network samples without reweighting

can reflect global properties. While we are only interested in

preserving the local structure of a caller A when we construct

its affinity graph, the idea that subsets of the affinity graph re-

flect global properties motivates our decision to examine sub-

regions of the affinity graph GA to build our feature set. In

particular, our features of interest are the differences of the

activity vectors of adjacent subgraphs of GA.

To compute the features, we first define the following:

Let r, r : V → R
16, represent the activity vector sum, and let

its ith entry be the sum of the ith entries of the activity vectors

of the vertices in a subgraph GA = (VA, EA), i.e.,

ri(GA) =
∑

v∈VA

UA(v, i), (1)

where UA(v, i) denotes the ith entry of the row for caller v
in the activity matrix UA. Suppose G1 = (V1, E1) and

G2 = (V2, E2) are two connected subgraphs of GA. We re-

strict G2 to the subgraphs of G1. For pairs of such subgraphs,

our set of features FA for an affinity graph GA is the set of

activity sum differences FA = {r(GA,1) − r(GA,2)} for the

subgraphs. In Figure 1(b), one example subset of features

would be {r(T1) − r(Ti) | i ∈ [2, 10]}. To efficiently com-

pute these features for affinity graphs, we employ the notion

of integral images from [5] and extend it to general graphs.

Background on Integral Images. Consider an image

G = (V,E) – i.e., G is a finite two-dimensional lattice.

Vertices are labeled in lexicographic order, starting from the

top left corner vertex as vertex 1 and proceeding sequen-

tially from left to right and top to bottom. With this lexi-

cographic order, the integral image z(v) replaces the image

pixel value U(v) at pixel v with the pixel sum of all vertices

above and to the left of v, i.e.,

z(v) =




U(v) if v = 1,

U(v) +
∑
v′<v

z(v) otherwise. (2)

For example, the pixel sum of window D in Figure 1(a) can be

computed in four array references: z(1)+z(4)−(z(2)+z(3)).
Integral Affinity Trees. We extend the integral image

concept to trees. We first provide the following standard def-

initions for a graph G = (V,E) [12]. A path exists between

any two vertices v, w ∈ V if a sequence of edges in E con-

nects them. A (directed) tree T = (V,E) is a graph such that

any two vertices v, w ∈ V are connected by exactly one path

that has no repeated vertices. A vertex w ∈ V is a descendant

of a vertex v ∈ V if there exists a directed path from v to w.

We denote by Dv the set of descendants of v. In addition, the

subtree Tv of T with root vertex v ∈ V is the subgraph con-

taining v and descendants w ∈ Dv .

For an affinity tree graph GA associated with vertex A,

our features of interest are the differences of feature sums in

adjacent subtrees, i.e., {r(Tv) − r(Tv′) for v′ ∈ Dv}. To

compute these features, we define an integral affinity graph:

Definition 1. Consider an affinity tree graph TA = (VA, EA)
for a caller A. Then the integral affinity graph zA at a ver-

tex v ∈ VA is defined as the activity vector sum of subtree Tv:

zA (v) =
∑

v′∈Tv

UA(v
′) = r(Tv), (3)
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(a)

(b) (c)

Fig. 1. Example networks to illustrate integral affinity graphs: (a) a

2-D lattice from [5], (b) a tree, and (c) a general network.

where UA(v) is the activity matrix row corresponding to ver-

tex v and r is the feature sum function in (1).

The integral affinity graph for trees can be expressed by

the following recurrence relations:

zA (v) =




UA(v) if |Dv| = 0

UA(v) +
∑

v′ a child of v

zA(v
′) otherwise

. (4)

Computing the difference between two subtree activities is

equivalent to computing the integral affinity graph difference

at the two roots of the subtrees. In Figure 1(b), for example,

the difference between the subgraph activities for subtrees T2

and T5 is z1(2)− z1(5).
Extension to General Networks. For non-tree affin-

ity graphs GA = (VA, EA), we define the integral affinity

graph in terms of a tree-like structure that accounts for inter-

level connections. We use breadth first search (BFS) to con-

struct spanning trees, which entails exploring all neighbors

of caller A before exploring neighbors of neighbors [12].

We construct the BFS tree TA with root A and denote the

dth level set of vertices in GA with respect to TA as LTA,d,

where d = 1 is the root level and d is no more than the max-

imum depth of TA. For example, Figure 1(b) shows the BFS

tree of Figure 1(c), so the vertices 5 and 6 belong to the level

set LT1,3. We account for connections between levels in the

BFS tree since we are interested in the distance of subtrees

from the root – i.e., the integral affinity graph for vertex 4
in Figure 1(c) will include not only the activity sums for its

children, but also for the vertex 6. For simplicity, we do not

account for intralevel edges, such as (2,3) or (3,4). If prop-

erties such as clustering coefficients are features of interest,

they can be included in the activity matrix UA.

Let Ωv represent the neighbors of vertex v ∈ VA in the

arbitrary network GA. Define a region Rv with root ver-

tex v ∈ V at level i in TA as

Rv = {v ∪ (Ωv ∩ LTA,i+1)}. (5)

We then have the following definition for general networks:

Definition 2. Consider an affinity graph GA = (VA, EA) for

a caller A. Let TA denote its corresponding breadth-first-

search tree with root A. Then the integral affinity graph with

respect to TA for a level-i vertex w ∈ VA is defined as the sum

of the activity vectors of w and its neighbors in level set i+1:

zA (v) =
∑

v′∈Rv

UA(v
′) = r(Rv), (6)

where Rv is the region with root v ∈ VA, UA(v) is the activity

vector of vertex v, and r(Rv) is the activity vector sum.

For a vertex v ∈ LTA,i, the corresponding recurrence re-

lations are as follows:

zA (v) =




UA(v) if |Dv| = 0

UA(v) +
∑

v′∈Rv

zA (v′) otherwise . (7)

The integral affinity graph allows efficient feature computa-

tion. Computing the BFS tree has worst-case time complex-

ity O(|V | + |E|) [12], and computing the integral affinity

graph requires traversing the BFS tree from the leaves to the

root, which has complexity O(|V |). Given the integral affin-

ity graph, we can compute our subgraph activity differences

in two array references. For example, the difference between

the regions R1 and R6 in Figure 1(c) is given by z1(1)−z1(6).
Since the vertices are in tree levels 1 and 3 respectively, we

assign the category 31 to this feature. An affinity graph GA

with a d-level BFS tree TA will have
(
d
2

)
such feature cate-

gories. For 2000 randomly selected vertices from the month 1

network and fixed snowball sample size M = 50, we ob-

tain 13,886 21-features, 65,407 32-features, and 26,692 42-

features, for example. Note that we can compare networks

that have BFS trees with different depths by encoding the lack

of a level in the associated feature vector. We use these cat-

egories of features to train and test a cascaded classifier for

churn detection, which we introduce in Section 4.

4. CLASSIFIERS

We use two types of base classifiers as implemented in the

Python scikit-learn toolbox 0.14 [13]: naive Bayes and de-

cision tree classifiers. We also tried k-nearest neighbor clas-

sifiers and stochastic gradient methods [14] but omit those

results in this paper. We first describe the base classifiers and

then discuss implementation of the cascaded classifier.

Naive Bayes Classifier. The first classifier we consider is

naive Bayes, which applies Bayes’ theorem with strong inde-

pendence assumptions [14]. It has a conditional probability

model p(Y | X1, . . . , Xn), where Y is the dependent class

that is conditional on the feature variables X1, . . . , Xn. Ap-

plying Bayes’ Theorem and independence of the features, the

conditional probability can be written as

p (Y | X1, . . . Xn) =
1

Z
p (Y )

n∏

i=1

p (Xi | Y ) , (8)

where Z is a normalization constant. The estimated class ŷ
given test data x1, . . . , xn is

ŷ = argmax
y

p(y)

n∏

i=1

p (xi | y) . (9)

The class priors p(y) are computed empirically from the train-

ing data; the independent probability distributions p(xi | y)
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are Gaussian with mean and variance estimated empirically

from the training data. Although our features are not indepen-

dent and the Gaussian model is not accurate for our model,

naive Bayes is efficient in terms of CPU and memory and is a

common testbench classifier in the literature [15].

Decision Tree Classifier. The Decision Tree classifier

infers simple decision rules from features to build a tree and

predict variable classes. Each node in the tree represents a

type of feature, and each directed edge from that node refers

to a particular instance of that feature. The classifier works

by sorting each instance of the features down a tree from the

root to a leaf node that gives the class of the instance [14].

We use the C4.5 decision tree algorithm [16].

Cascaded Classifier. After tuning, both base classifiers

in our experiments yielded high detection rates but also high

false alarm rates. For example, given activity vectors of 1000

churners and 1000 non-churners for each month of the 3.7

million caller network, training and testing a naive Bayes

classifier with month 1 data yielded a 98% detection rate and

a 44% false alarm rate for month 2. To reduce the false alarm

rate, we build a cascaded classifier [5] for churner detection.

The cascaded classifier operates in stages. At each stage,

we choose a feature category (see Section 3), a sample

size M , and a base classifier that together minimize the

false alarm rate while ensuring a detection rate above a given

threshold. The vertices we classify as non-churners in the

first stage are not considered in later stages and are discarded

from the remaining test data. The second and subsequent

stages are conceptually equivalent to stage 1. This process

continues until the target false alarm rate is reached.

Suppose pd,i represents the detection rate of the ith stage,

and pf,i denotes the false alarm rate of the ith stage, i ∈ [1, L].
Then the detection rate pd of the cascaded classifier is the

product of the L stage detection rates pd,i. Likewise, the

cascaded false alarm rate pf is the product of the L stage

false alarm rates pf,i. Implementing these stages drastically

reduces the false alarm rate. For example, a 4-stage cascade

that has false alarm rate 0.4 at each stage will have an overall

false alarm rate of 0.027. The detection rates also decrease

at each stage, but hopefully by a lesser amount than the false

alarm rate. We apply this classifer to obtain empirical results

for the caller data in the next section.

Naive Bayes Decision Tree Mixed Stages

Stage pd pf pd pf pd pf
1 0.98 0.44 0.98 0.44 0.98 0.44
2 0.92 0.26 0.92 0.23 0.92 0.23
3 0.86 0.068 0.78 0.041 0.85 0.067
4 0.56 0.014 0.64 0.003 0.71 0.008

Table 1: Detection (pd) and false alarm (pf ) rates for cascaded

classifiers. Mixed stages yield the highest detection rate.
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Fig. 2. Results for three cascaded classifiers. The circles (blue)

show results for mixed naive Bayes and decision tree classifiers

across stages. The squares (red) are for only naive Bayes and the

asterisks (black) are for only decision tree classifiers across stages.

We see that the subgraph activity difference features together with

the seed vertex vectors and mixed stages allow a false alarm rate

of 0.08% with 71% detection.

5. EMPIRICAL RESULTS

We consider two months of a 3.7 million caller dataset and

construct networks as in Section 2. We uniformly sample

seed vertices from each month so that 1000 churners and 1000

non-churners are collected. We use the method outlined in

Sections 3 and 4 to compute features and train three cascaded

classifiers using the month 1 data. Each classifier has an ini-

tial stage consisting of a naive Bayes classifier with the ac-

tivity vectors of the seed vertices as features. The rest of the

stages are either all naive Bayes classifiers, all decision trees,

or a combination of both. After tuning, the decision trees have

maximum depth 1 and use all features to find the best split.

Table 1 and Figure 2 illustrate our results. The mixed-

stage classifier has the highest churn detection rate at 71%,

while its false alarm rate is 0.8% – that is, we correctly iden-

tify 710 of 1000 month 2 churners while incorrectly classify-

ing 8 of 1000 non-churners; to compare, the initial stage cor-

rectly identifies 980 of 1000 churners while incorrectly clas-

sifying 440 of 1000 non-churners.

6. CONCLUSION

We develop an efficient feature extraction and classification

scheme for detecting churners in a 3.7 million caller network.

We first construct features that quantify activity differences

between connected subgraphs by computing integral affin-

ity graphs. We then implement a cascaded classifier that

yields 71% detection of the churners and a 0.8% false alarm

rate. Our results illustrate that graph-dependent feature sets

are a powerful tool that can be combined with single-vertex

feature vectors to reduce the false alarm rate. In future work,

we hope to improve the features and classifiers to achieve

greater computational efficiency and further reduce the false

alarm rate without compromising the detection rate.
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