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ABSTRACT
This paper introduces a novel spectral anomaly detection method by
developing a graph-based filtering framework. In particular, we con-
sider the problem of unsupervised data anomaly detection over wire-
less sensor networks (WSNs) where sensor measurements are repre-
sented as signals on a graph. In our framework, graphs are chosen
to capture useful proximity information about measured data. The
associated graph-based filters are then employed to project the graph
signals on normal and anomaly subspaces, and resulting projections
are used in detection of data anomalies. The proposed approach has
two main advantages over the standard spectral technique, principal
component analysis (PCA). Firstly, graph-based filtering allows us
to incorporate structural information known a priori (e.g., distance
between sensors) in addition to data. Secondly, it provides localized
transformations leading to effective distributed anomaly detection.
Our experimental results show that our proposed solution outper-
forms PCA-based and distributed clustering-based anomaly detec-
tion methods in terms of receiver operating characteristics (ROCs).

Index Terms— Anomaly detection, graph signal processing,
graph-based filtering, spectral methods, WSNs.

1. INTRODUCTION

Anomaly detection can be defined as the identification of patterns
that do not conform to the normal behavior. Therefore, an anomaly
detection approach requires (i) to define detection regions that repre-
sent the normal behavior, and then (ii) to declare observations which
do not belong to the these regions as anomalies. Detecting anoma-
lies can be very challenging depending on the application, the na-
ture of the input data, the type of the anomaly and the availabil-
ity/unavailability of data labels for supervised/unsupervised detec-
tion. Many techniques have been proposed for different anomaly
detection applications such as intrusion detection in computer net-
works, fault detection and event detection in environmental monitor-
ing [1]. In this work, we consider unsupervised anomaly detection
in wireless sensor networks (WSNs), where the sensor nodes collect
univariate data, and the anomalies of interest occur locally in both
time and space. These are special cases of collective anomalies as
defined in [1].

Anomaly detection in WSNs is further challenging due to the
inherent limitations on energy resources and processing power. In
WSNs the major source of energy consumption is communication
rather than computation. Thus, it is crucial to design distributed
anomaly detection techniques that minimize the communication cost
using in-network processing to improve energy efficiency. Unsuper-
vised methods are also useful in WSN applications, since they do
not require labeled data, which is usually hard to obtain. Basically,
unsupervised anomaly detection techniques can be classified as (i)
nearest neighbor-based, (ii) clustering-based, and (iii) spectral meth-
ods [1–3]. Typically, nearest neighbor methods identify anomalies
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by thresholding anomaly scores defined based on distance between
data points. On the other hand, clustering-based methods group sim-
ilar data instances into clusters. Then, data points belonging to large
and dense clusters are considered normal, and data instances in ei-
ther small or sparse clusters are declared as anomalies. The main
drawback in both nearest neighbor and clustering based techniques
is that they show good detection performance only when normal data
instances are densely clustered and anomalies appear in small and
sparse data groups. In addition, their detection performance highly
depends on the choices of features and distance measure, both of
which are challenging. Conversely, spectral methods follow a dif-
ferent approach where the goal is finding subspaces for normal and
anomalous regions in order to identify anomalous instances via pro-
jections. Although their detection performance strictly depends on
the choice of lower-dimensional embeddings, spectral methods do
not impose any assumptions on the density of data instances, and it
has been shown that they achieve good detection performance when
anomalies are collective [4]. This motivates us to introduce a new
unsupervised spectral anomaly detection method.

In the literature, principal component analysis (PCA) is ex-
tensively used for spectral anomaly detection, where normal and
anomaly subspaces are decomposed based on principal compo-
nents. Lakhina et al. [5] originally propose PCA to identify volume
anomalies for network intrusion detection. In [6], Huang et al.
present a scalable extension for network intrusion detection where
local filters are employed to aggregate network traffic data and PCA
is used for centralized anomaly detection. Specifically for WSNs,
Chatzigiannakis and Papavassiliou [7] apply PCA for supervised
anomaly detection by performing an offline training to define sub-
spaces using PCA. The principal components are then advertised
to the sensors to allow distributed processing. In fact, most of the
work on distributed anomaly detection focuses on statistical and
clustering-based techniques [3, 8]. Most recently, Rajasegarar et
al. [9] propose a distributed method where each sensor aggregates
its data via clustering, sends clustered data to the base station, and a
nearest neighbor procedure detects anomalous clusters. However, all
of these methods are completely data-driven, and do not exploit any
other information. The main motivation for our work is that for data
anomaly detection over WSNs, in addition to raw sensor data, prox-
imity information such as distance between sensors and any other
prior knowledge about the environment can be useful to capture
local anomalous behavior. Moreover, PCA-based techniques [4–7]
are not suitable for distributed anomaly detection, since principal
components of PCA are generated using complete data and have
no locality information. In order to overcome these problems, this
paper proposes a graph-based filtering [10] framework that (i) al-
lows to jointly exploit data and proximity information between data
instances, and (ii) enables effective distributed anomaly detection
using localized transformations. In particular, we propose to support
irregular data measurements as signals on nodes of a graph where
weighted edges reflect the similarities between signals (i.e., data
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instances). Then, graph-based filters are employed to project graph
signals onto normal and anomaly subspaces, and a thresholding
mechanism is used to label anomalous instances. For distributed
anomaly detection, the proposed framework allows us to define dif-
ferent localized transforms by designing both graph partitions and
graph-based filters. In this work, we focus on localized transforms
defined via graph partitioning.

There are few works on anomaly detection for graph-based data
using spectral graph theory. Ide and Kashima [11] propose to use
time-series graphs each of which is represented by an adjacency ma-
trix capturing the dependencies between computer network services,
and principal eigenvectors of adjacency matrices are used to detect
anomalous services. Similarly, Miller et al. [12] introduce a method
for detecting anomalous subgraphs by analyzing the eigenvectors of
a graph modularity matrix. Although it is possible to combine data
with proximity information to define edge weights on a graph, meth-
ods in [11, 12] only consider graph anomaly detection problem. No-
ble and Cook [13] detect graph anomalies based on the regularity
of a graph without using spectral techniques. Most similar to our
work, Crovella and Kolaczyk [14] apply wavelets on graphs for net-
work traffic analysis. Yet, they only use vertex domain operations
and do not provide any spectral interpretation. The proposed frame-
work is more general than existing spectral graph and PCA-based
techniques, since it has flexibility of choosing graphs and associated
filtering to design various spectral decompositions.

The rest of the paper is organized as follows. Section 2 presents
notations and basic concepts for graph-based filtering. The problem
definition and spectral decomposition formulations are presented in
Section 3. Section 4 discusses the proposed solution. We com-
pare the performance of our method against both PCA-based and
clustering-based [9] methods in Section 5. Section 6 draws conclu-
sions based on experimental results.

2. PRELIMINARIES

2.1. Notation

Throughout the paper, we use capital bold letters for matrices and
lower-case bold letters for column vectors. Scalar values are denoted
as normal lower-case letters. The cardinality, Manhattan norm, Eu-
clidean norm and Frobenius norm operators are | · |, ‖ · ‖1, ‖ · ‖2 and
‖ · ‖F , respectively. The set of nodes is N = Nn ∪ Na and the set
of time instances is T = Tn ∪ Ta where sets with subscripts n and
a correspond to normal and anomaly partitions of each set, respec-
tively. The data matrix Y =

[
y1 y2 · · ·y|T |

]t is |T | × |N |, where
yi is the column vector of |N |measurements at time i ∈ T . Let Y0

be the mean removed data matrix, so the data covariance matrix is
defined as C = 1

|T |−1
Yt

0Y0.

2.2. Graph-based Filtering

The signals of interest are defined on an undirected, weighted and
connected graph G(N , E ,W) with no self-loops, where N is the
set of nodes with |N | elements, E is the set of edges, and W is the
weighted adjacency matrix with non-negative entries. If there is an
edge between nodes i and j, the element at i-th row and j-th column
of W is greater than zero (wi,j > 0), otherwise wi,j = 0. The
signals are defined on the nodes of the graph and represented as a
vector y ∈ R|N| where the i-th element of vector y represents the
signal at i-th node inN .

The normalized graph Laplacian associated to a graph G is
LG = I − D−

1
2 WD−

1
2 where D is the diagonal degree ma-

trix such that the i-th diagonal element di,i is the sum of weights
of edges incident to i-th node in N . The normalized Laplacian
LG is a real symmetric matrix, and therefore it has a complete
set of orthonormal eigenvectors, denoted as {ul}l=1,...,|N|, whose
associated eigenvalues {λl}l=1,...,|N| are real and non-negative.
The eigenpairs {λl,ul}l=1,...,|N| of LG provide a Fourier-like
frequency interpretation of signals defined on graphs [10], so
that the spectrum on the graph is defined by the eigenvalues
and the eigenvectors determine the harmonic modes for graph
signals. In addition, the normalized graph Laplacian has the
nice property that its spectrum is always contained within the
range of [0, 2] (i.e., λl ∈ [0, 2] for l = 1, ..., |N |). Since
the normalized graph Laplacian is always diagonalizable, then
LG = UGΛGUt

G where UG is the eigenvector matrix composed
of {ul}l=1,...,|N| whose associated eigenvalues appear in the diag-
onal matrix ΛG. The Graph Fourier Transform (GFT) is defined
by the matrix Ut

G, and can be thought to be analogous to discrete
Fourier transform (DFT) in traditional digital signal processing [15].
Graph-based filtering is defined in spectral domain by the normal-
ized graph Laplacian that is, h(LG) = UG(h(ΛG))Ut

G where
h(ΛG) = diag

(
h(λ1), ..., h(λ|N|)

)
. Hence, the input-output re-

lation of graph based filtering on graph signals can be written as
ŷ = h(LG)y = UG(h(ΛG))Ut

Gy. For further details on graph-
based filtering, we refer to [10, 15].

3. PROBLEM FORMULATION

We consider the problem of unsupervised data anomaly detection in
WSNs where each sensor in N measures univariate data (single at-
tribute) in a time window T , and the anomalies of interest are special
cases of collective anomalies [1] which appear locally in both time
and space. For instance, a rapid variation in temperature caused by a
fire in some region of a field is a collective data anomaly. Our main
assumption is that the normal data instances are more frequent than
anomaly instances in time i.e.,

|Tn| � |Ta|. (1)

For space, we only assume that anomalies are localized. Centralized
and distributed anomaly detection problems are defined as follows.
• In centralized anomaly detection, all sensor nodes send their

data samples to the base station, and the base station identifies
anomalous time instants.

• In distributed anomaly detection, the network is divided into
communication clusters (i.e., graph partitions) denoted as C, and
a cluster head is chosen for each cluster. Then, all sensor nodes
send their data samples to their dedicated cluster head which de-
tects anomalous time instants. For example, clustering can be
done using energy efficient protocols such as LEACH [16].

As discussed in Section 1, the spectral anomaly detection problem
boils down to defining subspaces that represent the normal and
anomalous regions. In the following subsections, we formulate the
spectral decomposition using both graph-based filtering and PCA.
In addition, we unify both formulations, and show that PCA is a
special case of spectral decomposition with graph-based filtering.

In our formulations, X = Yt
0 denotes the data matrix of size

|N | × |T |. We first assume that the anomalies in X are known
(labeled) for each time instance, where Xn is the |N | × |Tn| matrix
having normal data instances, and Xa is the |N |×|Ta|matrix whose
each column has at least one anomalous data instance. In what fol-
lows we first present a supervised formulation. The unsupervised
spectral decomposition only has access to the (unlabeled) matrix X,
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so based on the main assumption stated in (1) we propose a relaxed
solution in Section 4.

3.1. Spectral decomposition using Graph-based Filtering

We formulate the general graph-filtering based spectral decomposi-
tion as finding an undirected, weighted and connected graph G, and
two graph-based filters (h(λ) and h̃(λ)), that solve the optimization
problem,

minimize
G,h,h̃

‖Xn − h(LG)Xn‖F + γ‖Xa − h̃(LG)Xa‖F (2)

where the scalar γ is the weighting factor.
In this paper, we restrict our attention to ideal low-pass and high-

pass filters, so the problem (2) reduces to finding G and λc ∈ [0, 2]
by solving the optimization problem,

minimize
G,λc

‖Xn − hλc
n (LG)Xn‖F + γ‖Xa − hλc

a (LG)Xa‖F

subject to hλc
n (λ) =

{
1 if λ ≤ λc
0 if λ > λc

, hλc
a (λ) =

{
1 if λ > λc

0 if λ ≤ λc

(3)

where hλc
n (LG) = UG(hλc

n (ΛG))Ut
G is analogous to an ideal low-

pass and hλc
a (LG) = UG(hλc

a (ΛG))Ut
G corresponds to an ideal

high-pass filtering operation defined on the normalized graph Lapla-
cian, LG, on graph G.

3.2. Spectral decomposition using PCA

The PCA-based spectral decomposition problem can be posed as
finding an r ∈ {1, ..., (|N | − 1)} that solves the optimization prob-
lem,

minimize
r

‖Xn −Pn(r)Xn‖F + γ ‖Xa −Pa(r)Xa‖F

subject to Pn(r) = Vn(r)Vt
n(r), Pa(r) = Va(r)Vt

a(r)
(4)

where Vn(r) = [v1 · · ·vr] and Va(r) = [vr+1 · · ·v|N|] are the
matrices composed of principal components {vi}i=1...|N| which
also construct columns of V diagonalizing the covariance matrix
C = VΛVt. The projection matrices can be also written as

Pn(r) =
r∑
j=1

vjv
t
j and Pa(r) =

|N|∑
j=r+1

vjv
t
j . (5)

The following proposition shows that PCA-based spectral de-
composition problem can be considered as a special case of spectral
decomposition using graph-based filtering.

Proposition 1 The PCA-based decomposition problem in (4) is
equivalent to graph-based decomposition problem stated in (3) if
LG is selected as C−1, that is inverse of the covariance matrix.

Proof: Let any covariance matrix be C = VΛVt where the
columns of V are the eigenvectors and Λ = diag(λ1, ..., λ|N|)
has eigenvalues with λ1 ≥ λ2 ≥ ... ≥ λ|N|. The inverse of
C, C−1 = VΛ−1Vt has same set of eigenvectors, but Λ−1 =
diag(λ−1

1 , ..., λ−1
|N|) where λ−1

1 ≤ λ−1
2 ≤ ... ≤ λ−1

|N|. Since ∀r ∃λc
(or ∀λc ∃r) such that Pn(r) = hλc

n (C−1) and Pa(r) = hλc
a (C−1)

by their definitions, the statement is true.
In general, we cannot find a graph that satisfiesLG = C−1. But,

as a specific case, if data follows Gaussian Markov Random Field
(GMRF) model, then there exists a graph such that LG = C−1 [17].

4. PROPOSED SOLUTION

The proposed solution for unsupervised anomaly detection using
graph-based filtering involves three steps discussed below.

4.1. Graph construction

The goal is to design an undirected and connected graphG(N , E ,W)
with non-negative weights as discussed above. In proposed graph
construction, the nodes (N ) representing the sensors are fixed.
Therefore, the graph construction becomes equivalent to finding an
adjacency matrix W which also defines the edges E . We present
three graph designs by defining corresponding adjacent matrices
Wd(θd), Wc(θc) and Wb(∆c,∆d). The entries of Wd(θd) are
determined based on the distance between sensor nodes as follows,

[wi,j ]d =

{
1

D(i,j)
if D(i, j) ≤ θd and D(i, j) 6= 0

0 otherwise
(6)

whereD(i, j) is the Euclidean distance between sensor nodes i ∈ N
and j ∈ N . θd is the threshold determining the graph connectivity.
Similarly, we define Wc(θc) whose entries are determined based on
correlation coefficients obtained from the data,

[wi,j ]c =

{
‖ρ(i, j)‖1 if ‖ρ(i, j)‖1 ≥ θc
0 otherwise

(7)

where ρ(i, j) = ci,j
/

(
√
ci,icj,j) that is calculated using elements of

the covariance matrix C, and θc is the threshold. The entries of the
third adjacency matrix Wb(∆c,∆d) are calculated based on both
distance and correlation coefficients (ρ) as follows,

[wi,j ]b = exp

(
−

(1− ‖ρ(i, j)‖1)2

∆2
c

)
· exp

(
− D̃(i, j)

2

∆2
d

)
(8)

where D̃(i, j) ∈ [0, 1] is the normalized distance between sensor
nodes i ∈ N and j ∈ N . ∆c and ∆d are the parameters determining
exponential decay rate.

4.2. Finding cut-off frequency (λc) of graph-based filters

In this step, we separate normal and anomaly subspaces for unsu-
pervised detection. Since the data is unlabeled, we approximate
Xn ≈ X under the assumption stated in (1). The cut-off frequency
λc is found based on the spreads of projected data instances, in X,
onto eigenvectors {ul}l=1...|N| of LG. We define the spread of data
projected on eigenvector ul as,

σ2
l = s2[utlX] (9)

where s2[pt] denotes the sample variance of the elements of a row
vector pt. Let us assume (without loss of generality) that σ2

1 ≥
σ2
2 ≥ ... ≥ σ2

|N| and define σ2
T =

∑|N|
k=1 σ

2
k. The index c of λc is

found as,

arg max
c

c∑
l=1

σ2
l

σ2
T

subject to
c∑
l=1

σ2
l

σ2
T

≤ θs (10)

where θs ∈ [0, 1] is to the target ratio of data spread in normal space
to the total data spread in whole space. In practice, this parame-
ter is selected depending on the application and expected frequency
of anomalies by the WSN-operator, and it is analogous to minimum
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Fig. 1. ROC results for (a) global and (b) distributed anomaly detection using graph-based filtering (GBF), PCA-based (PCA) and clustering-
based (CB) methods and their associated parameters. The curves GBFd(θd, θs) and GBFc(θc, θs) correspond to graph construction with
distance and correlation information, respectively. GBFb(θs) corresponds to graph construction using (8) with ∆c = ∆d = 1. In (a), the
curve with label GBF(Perfect) represents perfect detection results which are GBFb(θs = {0.90, 0.95}) GBFd(θd = {120, 240,∞}, θs =
{0.90, 0.95}), GBFc(θd = {0, 0.2, 0.4}, θs = {0.90}) and GBFc(θd = {0.4}, θs = {0.95}). In (b), the selected graphs are fully connected.

Table 1. AUC comparison of proposed method (using fully connected graphs) against PCA and clustering-based (CB) methods
Method Global (using score s̃i) Global (using score si) Distributed (using score s̃i) Distributed (using score si)

θs=0.90 θs=0.95 θs=0.99 θs=0.90 θs=0.95 θs=0.99 θs=0.85 θs=0.90 θs=0.95 θs=0.85 θs=0.90 θs=0.95
PCA 0.1075 0.0241 0.9500 0.5645 0.5817 0.8949 0.4090 0.4268 0.5034 0.6987 0.7177 0.8170

GBFd 1.000 1.000 1.000 1.000 1.000 1.000 0.8348 0.9012 0.8795 0.9329 0.9086 0.8613
GBFc 1.000 0.9538 0.4826 1.000 0.9889 0.7896 0.9283 0.8753 0.7589 0.9455 0.9424 0.9146
GBFb 1.000 1.000 0.5067 1.000 1.000 0.7958 0.9024 0.9137 0.8052 0.9500 0.9413 0.9060

CB Global (20 clusters) Global (60 clusters) Distributed (20 clusters) Distributed (60 clusters)
0.9450 0.9846 0.5544 0.6109

cluster size chosen in clustering-based methods. For example, set-
ting θs = 0.95 means that λc will separate normal and anomaly
spaces such that 95% of the data spread is in normal space and 5%
is in anomaly space.

Note that the parameter r in spectral decomposition with PCA
can be found by replacing ul by vl (eigenvectors of C) for l =
1, ..., |N | in (9) and changing c to r in (10).

4.3. Thresholding anomaly scores

After spectral decomposition using graph-based filtering or PCA, we
can project data instances onto normal and anomaly subspaces via
orthogonal projection matrices On and Oa where On = hλc

n (LG)
and Oa = hλc

a (LG) for graph-based filtering. For PCA, On =
Pn(r) and Oa = Pa(r). Anomalies are detected by thresholding
an anomaly score for each time instant i ∈ T . The anomaly score
introduced in [5] only uses the projections on anomaly space, that is,
si = ‖Oaxi‖22 where xi is the i-th column of matrix X. We define
a different scoring using projections on both normal and anomaly
spaces as s̃i = ‖Onzi‖22 − ‖Oazi‖22 where zi = xi

‖xi‖2
. In prac-

tice, a commonly used threshold is three times the score’s standard
deviation from its mean. In order to show overall detection perfor-
mance of each method, different thresholds are chosen to generate
ROC curves. The results are presented in the next section.

5. RESULTS

We show the performance of proposed graph-based filtering (GBF)
approaches by benchmarking against PCA-based and clustering-
based (CB) [9] methods in terms of ROCs and their area under curve
(AUC). In our simulations, we generated a temperature map with
200 time snapshots (T = {1, ..., 200}) over a 600×600 grid using
an autoregressive (AR) model. The WSN has randomly positioned
|N |=100 nodes measuring temperature data. The collective data
anomalies are generated using a highly varying AR model with

different parameters at time instants Ta = {50, ..., 59} in |Na|=20
neighboring nodes’ data. For the distributed detection, the LEACH
protocol [16] divides the network into |C|=6 clusters and determines
cluster heads detecting anomalies.

We experiment the performance of each approach by varying
its associated parameters (θs, θd or θc). ROC and AUC results are
generated by thresholding over anomaly scores s̃i and si. In addi-
tion, the clustering-based method proposed in [9] is implemented,
and the corresponding ROC results are obtained by varying num-
ber of clusters and k-nearest neighbor parameters. For each method,
the simulation is repeated 20 times with different anomaly patterns,
the average results are presented in Fig.1 and Table 1. As shown in
ROC and AUC results, only GBF approaches can achieve perfect de-
tection performance among all global detection methods. In the dis-
tributed case, proposed methods also provide better detection than
PCA and CB methods. The best distributed detection performance
(0.95 AUC) is achieved by GBFb which uses both distance and corre-
lation in graph construction. Although the CB method shows reason-
ably good global detection performance, its distributed performance
is worse than both GBF and PCA methods. Moreover, the detection
performance of PCA method can seriously degrade depending on the
choice of θs, but GBF methods are robust to changes in θs.

6. CONCLUSIONS

In this paper, we introduce a novel spectral anomaly detection frame-
work using graph-based filtering. We also show that standard PCA-
based methods are special cases of the proposed method. Inspection
of experimental results lead us to following conclusions:
• The proposed approach significantly outperforms state-of-the-

art methods in both global and distributed cases.
• Distance between sensors can be exploited to improve localized

anomaly detection performance.
• The proposed method is robust to parameter perturbations and

works well with different anomaly scoring metrics.
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