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ABSTRACT

Given an universe of distinct, low-level communities of a network,
we aim at identifying the “meaningful” and consistent communi-
ties in this universe. We address this as the process of obtaining
consensual community detections and formalize it as a bi-clustering
problem. While most consensus algorithms only take into account
pairwise relations and end up analyzing a huge matrix, our proposed
characterization of the consensus problem (1) does not drop useful
information, and (2) analyzes a much smaller matrix, rendering the
problem tractable for large networks. We also propose a new pa-
rameterless bi-clustering algorithm, fit for the type of matrices we
analyze. The approach has proven successful in a very diverse set
of experiments, ranging from unifying the results of multiple com-
munity detection algorithms to finding common communities from
multi-modal or noisy networks.

Index Terms— Community detection, consensus, bi-clustering.

1. INTRODUCTION

Networks are frequently used to describe many real-life scenarios
were units interact with each other (e.g., see [1, 2] and references
therein). A seemingly common property to many networks is the
community structure: networks can be divided into (in general non-
overlapping) groups such that intra-group connections are denser
than inter-group ones. Finding and analyzing these communities
sheds light on important characteristics of the networks and the data
they represent. However, the best way to establish the community
structure is still disputed. Addressing this is the topic of this work.
Let G = (V, E, ) be the graph to analyze, where V is the set
of n nodes, E is the set of edges, and ¢ : E — R is a weight-
ing function on the edges (in the following we indistinguishably
use the terms graph and network). Generically, we consider that a
community-detection algorithm provides a set C of candidate com-
munities (C C P(V'), where P(V) is the power set of V). Let us
consider that we are provided with a pool (universe) {Ci }5,—; of ¢
such sets. These candidates might come from:
e running different community-detection algorithms;
e running one algorithm with different parameters;
e running a community-detection algorithm on different modalities
of the same data, by changing the set of edges and/or the function
1) (this case subsumes a network that changes over time);
e all of the above simultaneously.
Given the pool {Cx }§,—,, we ask which is the partition Cx most rep-
resentative of the actual community structure of the network G? For
this one would need a criterion to select a specific partition and dis-
card all others. This has proven a rather difficult task, where even
the standard measure, modularity, has known shortcomings [3]. But
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why do we have to settle with selecting one solution from the pool?
We argue that a better option is to combine the information of the
different results into a new result.

Consensus/ensemble clustering is a well known family of tech-
niques used in data analysis to solve this type of problems. Typically,
the goal is to search for the so-called “median” (or consensus) par-
tition, i.e., the partition that is most similar, on average, to all the
input partitions. Recently, these ideas have begun to be adapted to
the community detection problem [4, 5].

The most common form of consensus clustering involves cre-
ating an n x n matrix B = 13°¢_ By, where (Bi)i; = 1if
(3C € Ck) i,j € C, and 0 otherwise. There are many algorithms
for analyzing B, from simple techniques such as applying a cluster-
ing algorithm to it (e.g., k-means or hierarchical clustering), to more
complex techniques. See [6] for a thorough survey of the area. An
interesting approach was proposed in [7], where the authors look for
a matrix B* such that

¢ -2 ~ 2

B" :argminZHkaBH :argminHBfBH Y]
They solve (1) using Non-negative Matrix Factorization (NMF).

In the context of community detection, two works have explic-
itly addressed the consensus problem. In [5] the matrix B is sim-
ply thresholded, and its connected components give the final result.
In [4] B is considered as the adjacency matrix of a new weighted
network. Then the following steps are iteratively applied: (1) a
unique non-deterministic algorithm is applied ¢ times, (2) form B
and threshold it to make it sparse, (3) stop if B is block diagonal,
and (4) build a new network from B and go to (1).

Notice that the aggregation process used to build B involves
loosing information contained in the individual matrices By,. In par-
ticular, only pairwise relations are conserved, while relations involv-
ing larger groups of nodes might be lost. In addition, using the av-
erage of several partitions might not be robust if some of them are
of poor quality. All these methods involve working with an n X n
matrix, which is highly prohibitive when the number of nodes n in
the network becomes large.

Contributions. We propose a novel framework and perspective for
consensus community detection by posing it as a bi-clustering prob-
lem. Our proposed approach has two main advantages: (1) all rela-
tions are conserved (instead of only keeping pairwise relations) and
contribute to the consensus search, and (2) we use a much smaller
matrix, rendering the problem tractable for large networks. We also
propose a new parameterless bi-clustering algorithm, fit for the type
of matrices we analyze. We stress that our goal is not finding a better
optimum for the objective function of a given community detection
method, but obtaining an overall good solution via consensus search.

The remainder of this work is organized as follows. In §2 we
present the proposed approach. In §3 we discuss the experimental
results, and finally we provide some closing remarks in §4.
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Algorithm 1: Bi-clustering algorithm.

input : Preference matrix A € R"*™
output: Consensus communities {Rt}tT:l and the original
communities they come from {Q; }7—; .

1 T+ 0

2 while |[A]|; > 0do

3 T+ T+1;

4 Solve Problem (5) for U,V with ¢ = 1;

s | Rr<{i,1<i<n, (U)iy#0}

6 QT<_{j7 1<j<m, (V)17j5£0};

7 if different communities cannot share nodes then
s | [ (Vig)i€eRr,1<j<m, Ay« 0;

o | (Vi,j)1<i<n,j€Qr, Ay < 0;

10 return {R;} 71, { Qi )}y

2. CONSENSUS COMMUNITY DETECTION

The input of the consensus algorithm is a pool {Cr}f_; of candi-
dates, that defines the universe of candidates & = | J;_, Cx. We also
assign a weight w; € RY to each community candidate C; € U.
From the set of nodes V" and U/, we define an n X m matrix A, whose
rows and columns represent the n = |V/| nodes and the m = ||
candidates, respectively; the element (A);; = wj if the i-th node
belongs to the j-th community, and O otherwise. We call A a prefer-
ence matrix. In figs. 1 and 2 we can see two examples (white circles
indicate the non-zero entries of A).

The community weights indicate the importance assigned to
each candidate and can take any form. The simplest form uses
uniform weights (V) w; = 1, in which case A becomes a binary
matrix. In this case, no prior information is used about the quality
of the input community candidates. If we have such information, it
can be freely incorporated in these weights.

We are interested in finding clusters in the product set V' x .
Such a problem is known in the literature as bi-clustering [8, and
references therein], and we are therefore formally connecting it here
for the first time with consensus algorithms.

The main contribution of this work is therefore to address the
problem of consensus community detection by bi-clustering the pref-
erence matrix A. This provides a very intuitive rationale since, for
each bi-cluster, we are jointly selecting a subset of nodes and a sub-
set of communities such that the former belong to the latter. By
directly analyzing A we keep all the information contained in U/ (A
is a complete representation of U/). More classical consensus algo-
rithms analyze an n X n matrix, while we, in contrast, work with a
much smaller matrix, since for common networks m < n. Another
important feature for analyzing very large networks is that each base
algorithm does not need to see the complete network G. We can split
the network in several (preferably overlapping) chunks, run one or
more algorithms in each chunk, and let our bi-clustering algorithm
perform the stitching.

Notice of course that if all of the base algorithms consistently
make the same mistakes, these will be translated to the consensus
solution, a characteristic common to all consensus algorithms.

2.1. Solving the bi-clustering problem

Two popular algorithms for bi-clustering are Penalized Matrix De-
composition (PMD) [9] and Sparse Singular Value Decomposition
(SSVD) [10]. Both algorithms iterate two steps until some stopping
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Fig. 1. The proposed iterative bi-clustering approach finds the cor-
rect number of bi-clusters (3) on the Aegean34 network [12], with
34 nodes (a different color is assigned to each pair (R; Q:), see
Algorithm 1). Directly solving (5) with ¢ = 2 undersegments A
(nodes are not assigned to any community, i.e., no color, despite a
lot of consistency between the base algorithms) and with ¢ = 4 over-
segments A (a single algorithm splitting a community is enough to
create a new “artificial” consensus community, see the red entries).

criterion is met: (1) find one bi-cluster {u, v, s}, where u € R",
veR™ scRT:(2)set A=A — suv'. For step (1), they solve

. |2 full, =1,[Ivll, =1,
(PMD)  min ||A — suv s.t. 2)
uv,s lull, < e v, < ez,
2
(SSVD) min A—suvTHF—i—)\l all, + Az V], . 3

Let R, Q be the active sets of u, v, respectively. R, Q act as in-
dicators of the presence of a rank-one submatrix in A: R selects
rows (nodes), while Q selects columns (communities). This behav-
ior makes PMD and SSVD very suitable for bi-clustering.

Correctly setting the parameters c1, c2, A1, A2 is crucial, since
they determine the size of the bi-clusters (via the sparsity of u, v).
PMD sets c1, c2 via cross-validation, while SSVD uses the Bayesian
information criterion. In [11] a minimum description length criterion
is used to set A1, A2 and the number of iterations for SSVD.

In this work, we propose to follow a different path for solving the
bi-clustering problem at hand. Let us first notice that non-negative
matrix factorization (NMF) [13] pursues a similar objective. For
1 < ¢ < min{n, m}, NMF solves the problem

min [A-UV|Z st UV>0 @
UeR™ X9 VeRIX™

A is, in our application, a sparse positive matrix. Thus, the positivity
constraints on U, V have a sparsifying effect on them. We thus ob-
tain sparse factors U, V as in PMD and SSVD without introducing
any parameters. Another consequence of the sparsity of A is that the
Frobenius norm is not entirely well suited for analyzing it. It is more
appropriate to use instead an L1 fitting term,

min||[A -UV|, st U,V >0. 5)
UV
With this change, we are also now aiming at obtaining a “median”
type of result instead of the mean, which is completely in accordance
with the objectives of consensus clustering discussed before.
Because of space limitations we omit the details on how to
solve (5). Any standard NMF algorithm can be adapted to use the
L1 norm; in this work, we modify the Alternating Direction Method
of Multipliers in [14], that has shown good performance in practice.
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PREFERENCE MATRIX AT

LouvAaIN INFOMAP

Fig. 2. Running different standard algorithms
on the “Les Misérables” network [15] with 77
nodes. We show three individual results and
the consensus solution. The bi-clustering re-
sult does not carbon-copy any of the individ-
ual solutions (the horizontal bands in AT), but
creates a new one. Also notice on the colored
preference matrix (bottom left) how the algo-
rithm “corrects” individual solutions (a differ-
ent color is assigned to each pair (R, Q:), see
Algorithm 1). The proposed consensus algo-
rithm detects two nodes as singletons (in white
in the bottom right graph): it is interesting to
notice that the base algorithms all differ on
how to treat this nodes and assign them to dif-
ferent communities.

Aleorith n=10%2,6=5 n=10%06=15 n=103,6=5 n=103,6=10 n=10%6=300 n=10%6=50 AVG
gorithm NMI

Mod. NMI Mod. NMI Mod. NMI Mod. NMI Mod. NMI Mod. NMI

Louvain 0.4942 05646 0.4356  1.0000 0.7571 0.8673  0.7591 0.9953  0.7646 1.0000  0.7943  0.9995 0.9044
Infomap 0.4811 0.5142 0.4356 1.0000 0.7527 0.8861 0.7589  1.0000 0.7646 1.0000  0.7943 1.0000 0.9001
SC-(K) 0.3348 0.3334 0.4356 1.0000 0.6118 0.7823  0.6653 09070  0.7530  0.9553 0.7833 09776  0.8259
SC-(K —1) 03065 03495 0.2855 0.6118 0.6514 0.8126 0.6624 0.8918 0.7599 09802  0.7846  0.9727  0.7698
SC-(K+1) 04281 05172 03780 0.8514 0.6178 0.8062 0.6619 0.9103 0.7210  0.9581 0.7914  0.9686  0.8353
SC-(K +2) 03611 03788 0.3208 0.7741 0.6006 0.7929  0.6340  0.8900  0.6988 0.9595 0.7843  0.9810 0.7961
Consensus 04760  0.5840 0.4356 1.0000 0.7501 0.8846 0.7589  1.0000  0.7646 1.0000  0.7937 0.9941  0.9105

Table 1. Results with synthetic networks (n is the number of nodes and § the average node degree), produced with a standard benchmark
generator [16]. There is no single algorithm that produces the best solution for every network; however, the consensus solution is always
competitive with the best base solution (in bold). To “help” SC, K was set to the number of ground truth communities. NMI and Mod. stand
for normalized mutual information and modularity, respectively.

CONSENSUS
SEFS‘DED (S)

CONSENSUS
NoN S§:EDED (N)

LOUVAIN INFOMAP Algorithm Mod. NMI
Louvain  0.6046 0.8964
Infomap  0.6005 0.9345
SC-(11)  0.5859 0.9054
SC-(10)  0.5928 0.8882
SC-(12)  0.5391 0.8872
Cons. (N) 0.5999 0.9309
Cons. (S) 0.5869 0.9425

Fig. 3. College football network [17] with 115 nodes, representing the matches between different teams. All base methods separate the node
(marked with a blue arrow) from its division. By looking at its edges (in green in the 4th graph), we see that this can indeed be correct given
the network. Using a little extra information, i.e., forcing the red and green nodes in the 4th graph to be in the same community, corrects this
effect. As before, NMI and Mod. stand for normalized mutual information and modularity, respectively.

CONSENSUS LOUVAIN (GENDER) LOUVAIN (STUDY FIELD)

Fig. 4. Network of Facebook links be-
tween 2006 Duke graduates (part of the
Facebook 100 dataset [18]) with 1424
nodes. We build two different modali-
ties by assigning weights to the edges
according to different node (student)
features: field of study and gender. We
find a consensus between the two dif-
ferent results of the Louvain algorithm.
The pie charts represent the distribution
of the nodes of each modality’s commu-
nities with respect to the consensus.
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A challenge with NMF is that g is not an easy parameter to set.
To avoid a cumbersome decision process, we propose to set ¢ = 1
and inscribe the L1-NMF approach in an iterative loop, as PMD and
SSVD. Algorithm 1 summarizes the proposed approach. Notice that
instead of subtracting UV from A, we set the corresponding rows
and columns to zero, enforcing disjoint active sets between the suc-
cessive U; and V;, and hence orthogonality. If the communities are
allowed to share nodes, we do not change the rows of A (all experi-
ments in this paper were performed with disjoint communities). An
example of the effectiveness of this approach is depicted in Fig. 1.

3. EXPERIMENTAL RESULTS

For the experiments we use the following base algorithms for
community detection: Louvain [19], Infomap [20], and Spectral
Clustering (SC-(K)) [21], where K is the number of detected clus-
ters/communities. For assessing the quality of a solution when
ground truth is available, we use normalized mutual information
(NMI). Unless specified, we use uniform weights in A.

Several algorithms, same network. The most classical consensus
scenario is when we have the result of several detection algorithms
and wish to combine them into a better result.

In Fig. 2 we can observe in detail how the bi-clustering algorithm
selects entries of A to create a new solution, preferring regularities
in the matrix, while disregarding peculiarities of individual solutions
(“inpainted” nodes do not have a black circle around them in the bot-
tom left graph in Fig. 2). An important feature is that the proposed
algorithm does not blindly select the best solution, but composes a
consensual solution from the provided candidates.

In Table 1 we test our results using a generator of synthetic

networks [16]. For this experiment, we compute the modularity
Mod(Cx) of the solution Cj provided by the k-th base algorithm
and we use a smooth increasing nonlinear function of Mod(Cy) as
the weight for each community C' € Cy. In general, there is no com-
munity detection algorithm that “rules them all” for every network;
however our algorithm consistently performs well in all examples.
Using seeds. What happens when there is not enough information
in the network to recover the “correct” structure? The College foot-
ball network [17] presents a very interesting example. The network
represents the matches played between teams in a season. The teams
are organized in divisions, and teams should play more matches with
teams from the same division than from different ones. Hence, divi-
sions are considered as ground truth communities for this network.
When we run different community detection algorithms on this net-
work, we can observe that one of the divisions is not well recovered
by any of them because one of its teams is assigned to a different
community, see the blue arrows in Fig. 3. But in fact, when we ob-
serve this team’s matches, it did not play against any of the teams in
his division! We can add a tiny bit of a priori information by manu-
ally adding seeds to A, i.e., by forcing some nodes (in Fig. 3 the red
and green nodes in the 4th graph) to be on the same community. For
this, we just modify the corresponding rows of A by replacing them
by their disjunction (logical or). This simple seeding mechanism is
able to correct the “original mistake.”
One algorithm, different networks. The proposed approach also
allows to combine the results of community structure algorithms that
analyze different aspects of a given network (e.g., a network with
different modalities or evolving over time).

The Facebook 100 dataset presents such an example. The edges
represent Facebook friendship but we can also observe several node
attributes (e.g., gender, major, minor, dorm, year of graduation). In
our particular example, we focus on the 2006 Duke graduates. We

P Best Median  Consensus
0.1 0.9224  0.8388 0.9258
0.25 0.8004 0.6944 0.8551
0.3 0.7428  0.6315 0.8244
0.35 0.6801  0.5581 0.7933

Table 2. Results of perturbing the edge set of the US politics books
network (http://www.orgnet.com/divided.html): p|E|
edges are exchanged at random. We provide average NMI values
across 1000 trials, using 10 perturbed networks per trial. The result
of Infomap in the original network is considered the ground truth.
The consensus solution outperforms all individual ones, with the per-
formance gap increasing as more edges are perturbed.

build two modalities of this network, by assigning different weights
to the edges. In the first one, we use gender information, assigning a
weight of 1 if an edge links students of different sex and of 2 other-
wise. In the second one, we use study field information, assigning a
weight of 1 if the students do not share major nor minor, of 2 if they
share major or minor, and of 3 if they share major and minor. We
run the Louvain algorithm independently on these two networks and
obviously obtain two different community structures, see Fig. 4. By
running our consensus algorithm on these two results, we produce a
solution that aggregates information from both modalities.

Another interesting example occurs when the network connec-
tivity changes over time or when different modalities exhibit dif-
ferent edge sets. This is important for example when the graph
is obtained through inference, because differences and/or errors in
the inference process might yield different connectivities. We simu-
late such an example by taking a network and building 10 perturbed
copies, randomly reassigning a subset of its edges. We then run In-
fomap on each copy and compare the result in terms of NMI with the
Infomap result on the original network (Table 2). When a small por-
tion of edges is perturbed, the best individual solution is still good,
because there is a non-negligible chance that one of the perturbations
does not alter the community structure of the original network. This
is no longer true as the number of perturbed edges increases. Our
algorithm is able to balance out the peculiarities of the perturbed
solutions, obtaining a solution much closer to the original one and
hence more resilient to perturbations.

4. CONCLUSIONS

We analyzed the process of generating consensual community detec-
tions and formalized it as a bi-clustering problem. This offers a new
perspective for this important problem. Our characterization of the
consensus problem offers several advantages: (1) there is no need to
drop useful information, contrarily to classical consensus algorithms
where only pairwise relations are considered; (2) we analyze a much
smaller matrix, rendering the problem tractable for large networks.
We also propose a new parameterless bi-clustering algorithm, fit for
the type of matrices we analyze. The approach has proven successful
in a very diverse set of experiments.

As future work, it would be interesting to analyze massive net-
works. Individual base algorithms would only analyze a portion of
the network, and our technique would be used for merging the re-
sults (consensus + stitching). We finally stress that the presented
concepts are general and exceed the community detection domain.
They can be applied to general data clustering, extending this novel
perspective to a more general scenario.
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