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ABSTRACT

Signal processing on graphs is an emerging field that attracts in-
creasing attention. For applications such as multiscale transforms on
graphs, it is often necessary to get a coarsened version of graph sig-
nal with its underlying graph. However, most of the existing meth-
ods use only topology information but no property of graph signals
to complete the process. In this paper, we propose a novel graph sig-
nal coarsening method with spectral invariance, which means both
the spectrum of the graph and the spectrum of the graph signal are
approximately kept invariant. The problem is formulated into an op-
timization problem and is solved by projected subgradient method.
Experiment results verify the effectiveness of the coarsening method.

Index Terms— Signal processing on graphs, graph signal,
coarsening, spectral invariance, spectral graph theory.

1. INTRODUCTION

Signal processing on graphs [1] is an emerging field of data analysis
in irregular domains. For an undirected graph G(V, E ,W), which
consists of a set of nodes V with |V| = N , a set of undirected edges
E , and an edge weight matrix W, a graph signal is a function f :
V → R where each vertex has one real number assigned to it. A
graph signal can also be represented as (G, s ∈ RN ). Considering
that examples of graph signals can be found in many engineering and
science fields, signal processing on graphs may play an important
role in solving these problems in near future.

Since real-world networks often have a large amount of vertices
and complex structures, real graph signals are usually in high dimen-
sions. To understand the graph signal at different scales, graph signal
coarsening is necessary to reduce the dimensionality and to present
a direct visualization.

The coarsening of a graph signal (G0, s0) is to obtain a graph
signal (G, s) with less vertices than the original one. The coarsening
processing should preserve properties of the original graph such as
community structure, dominant spectra, connectivity, or other topo-
logical properties and signal’s properties. Coarsening of a graph sig-
nal is seldom discussed in the literature, which is the motivation of
this work. Graph signal coarsening is closely related to graph coars-
ening and graph downsampling, which provide some approaches to-
wards solving the problem of coarsening graph signals.

Graph coarsening is to get a coarser version of the original
graph. Greedy algorithms [2, 3], random walk based methods [4],
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relaxation based algorithm [5], and spectral methods [6] can be used
to provide a solution. We refer readers to [5, 7] for more detailed
review of the literature. However, graph signals are not taken into
consideration in the graph coarsening problem.

Graph downsampling is to keep only a subset of the original ver-
tex set while removing others, and assign edges and weights to the
new set of vertices. For bipartite graphs, one subset of the bipar-
tition can be kept [8, 9]. For other types of graphs, spectral meth-
ods [8, 10, 11], optimizing max-cut [12] or kron reduction [13] can
be used. You may refer to [14] for a technical discussion on graph
sampling. As to signal on a downsampled graph, its amplitude on
the preserved vertex set is simply kept.

Similar to classical signal processing, there are equivalent repre-
sentations for a graph signal in vertex domain and in graph spectral
domain. The representation of a graph signal in spectral domain con-
tains the information of both topology and signal, which is really dif-
ficult to separate. Moreover, spectral invariance may preserve more
essential information of the original graph signal at the same time of
dimensionality reduction.

In this work, a graph signal coarsening method with spectral
invariance is proposed. The spectral domain representation of an
n-vertex coarsened graph signal is identical with the maximal n
spectral coefficients approximation of the N -vertex original graph
signal, where n is much smaller than N . Besides, the coarsened
graph is topologically similar with the original graph signal, which
is consistent with the intuition. Consequently, the coarsening prob-
lem is transformed into an optimization problem and then solved
iteratively by projected subgradient approach. Finally, experiment
results demonstrate the effectiveness of the proposed method.

2. THE PROPOSED GRAPH SIGNAL COARSENING
METHOD

The graph Laplacian is extensively used in the filed of signal pro-
cessing on graphs to describe the graph spectral domain [1, 15]. A
graph Laplacian [16] is

L = D−W,

where D is a diagonal matrix composed of the row sums of W. Be-
cause the Laplacian is a real symmetric matrix, all the eigenvalues
are nonnegative. For a connected graph, one and only one eigen-
value is zero. The eigenvalues and the corresponding eigenvectors
of L are regarded as frequencies and signal basis. The expansion
coefficients of a signal in terms of the eigenvectors are called the
frequency components.

The proposed coarsening method will be explained in detail in
the following subsections. First, a linear mapping is used to re-
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duce the signal dimensionality, with spectral invariance. Then the
coarsening problem is transformed into a constrained optimization
problem, which is consequently solved using projected subgradient
method.

2.1. Dimensionality reduction with spectral invariance

Suppose the original signal on an N -vertex connected graph is de-
noted by (G0, s0), where s0 ∈ RN . The eigenvalue decomposition
of the Laplacian of G0 is

L0 = U0Λ0U
T
0 ,

with the eigenvalues 0 = λ0,1 < λ0,2 ≤ · · · ≤ λ0,N and corre-
sponding eigenvectors u0,k(1 ≤ k ≤ N). The spectral component
for each frequency λ0,k is uT

0,ks0. To reduce the dimensionality, n
eigenvalues are selected to compose a new diagonal matrix Λ for
the coarsened graph signal. For simplicity, the selected eigenvalues
are denoted as λ1 ≤ λ2 ≤ · · · ≤ λn. To keep the connectivity of
the coarsened graph, the eigenvalue λ0,1 = 0 should be remained
as λ1. The other n − 1 selected eigenvalues are those who have the
strongest spectral components. The eigenvectors corresponding to
{λ1,λ2, · · · ,λn} compose an N × n matrix U.

The new composed Λ may be used to define our desired coars-
ened graph signal (G, s ∈ Rn), which is related to a small, n-vertex
graph G. The Laplacian of G can be written as

L = VΛVT, (1)

where V denotes the orthogonal basis of an n-dimensional coars-
ened signal space. Then the adjacency matrix of the coarsened graph
signal (G, s) is

W = In ◦ L− L = In ◦ (VΛVT)−VΛVT,

where In denotes the n × n unit matrix, and In ◦ L denotes the
Hadamard product or entrywise product of In and L.

To reduce the signal dimensionality by keeping spectral invari-
ance, the N -dimensional basis U of the original signal should be
reduced into the n-dimensional basis V, which is assumed to be a
linear transformation of U, i.e.,

V = AU, (2)

where A is an n × N transform matrix. Considering that V is an
orthogonal matrix, (2) can be transformed into

AUVT = In,

where the N×n matrix UVT is of full column rank. Consequently,
A is the left pseudo inverse of UVT, i.e.,

A = ((UVT)TUVT)−1(UVT)T = VUT. (3)

The coarsened signal s may also be transformed by the linear
transformation A, i.e.,

s = As0,

so that the frequency components are

VTs = VTAs0 = VTVUTs0 = UTs0.

It means that the frequency components are kept invariant under lin-
ear mapping A satisfying (3).

By the dimensionality reduction proposed above, spectral invari-
ance is achieved. However, the orthogonal matrix V is still unspec-
ified. In the following subsection, we will formulate the problem of
determining V as a constrained optimization problem.

x

f(x)

O

Fig. 1. An example of nonnegative-inducing penalty f(x).

2.2. Problem formulation and optimization algorithm

In this subsection, the coarsening problem is formulated into an op-
timization problem with a matrix variable V. As an orthogonal ma-
trix, V must satisfies V ∈ On, where On is an orthogonal matrix
set,

On = { X ∈ Rn×n | XXT = XTX = In}.
We will study the restrictions on L and then translate them to

constrain V. In order to ensure that L in (1) is actually a Laplacian of
an n-vertex graph, the following two restrictions have to be satisfied,

L1n×1 = 0n×1 (4)

and
lp,q

{
≤ 0, p ̸= q;
≥ 0, p = q,

(5)

where each entry of L can be expanded as a function of the entries
of V determined by (1), as

lp,q =
n∑

k=1

λkvp,kvq,k. (6)

The constraint (4) means that the row sums of L are all zero, while
(5) implies that L is entrywise nonpositive on nondiagonal positions
and nonnegative on diagonal positions.

Substituting (1) and utilizing the orthogonality of V, the con-
straint (4) is simplified as

ΛVT1n×1 = 0n×1. (7)

By defining the constraint set Sn as

Sn = { X ∈ Rn×n | ΛXT1n×1 = 0n×1},

the constraint (4) is equivalent to V ∈ Sn.
It is difficult to translate (5) into a constraint for V. However, it

can be transformed to part of our optimization objective by a partic-
ular penalty function. To ensure (5) is satisfied, we try to minimize
a function g(L) by defining

g(L) =
∑

p ̸=q

f(−lp,q) +
n∑

p=1

f(lp,p),

where the scalar function f(·) is a nonnegative-inducing penalty. For
example, as shown in Fig. 1, the function can be chosen as

f(x) = −αx · 1x<0,

where α is a positive constant and 1x<0 is the indicator function.
The other part of the optimization objective is to maximize the

topological similarity between G and G0. Suppose G̃ is a coarsened

1076



Algorithm 1 Graph Signal Coarsening Algorithm

Input: Original graph signal (G0, s0 ∈ RN ),
coarsened graph signal dimension n;

Output: Coarsened graph signal (G, s ∈ Rn);
1: Calculate the spectral domain representation of (G0, s0) to ob-

tain Λ and U;
2: Using existed topology-based method to obtain G̃ and L̃,

G̃ = T (G0);
3: Initialize a matrix V;
4: repeat
5: Choose the step size κ by backtracking line search and con-

duct gradient update using (10) and (11),
V = V − κ∇VF (V, t),
t = t− κ∇tF (V, t);

6: Project onto the set On using (12),
V = POn(V);

7: Project onto the set Sn using (13),
V = PSn(V);

8: until stopping criterion is satisfied;
9: Calculate the adjacency matrix of G and signal s ∈ Rn,

W = In ◦ (VΛVT)−VΛVT,
s = VUTs0.

graph via some existed graph coarsening method T (·) using topol-
ogy information only,

G̃ = T (G0),

and the Laplacian of G̃ is L̃. Therefore, the maximization of the
similarity between the topologies of G and G̃ can be transformed to
minimizing ∥L − tL̃∥F , where t is a positive multiple and ∥ · ∥F
denotes the Frobenius norm. The introduction of multiple t means
the two graphs are similar in the sense of relative edge weights.

Therefore, we are ready to formulate the following optimization
problem,

min
V,t

F (V, t), subject to V ∈ On ∩ Sn,

where the objective function is defined as

F (V, t) = g(L) + µ∥L− tL̃∥2F , (8)

and each entry of L is a function of V, as defined in (6).
The projected subgradient method is utilized to solve the pro-

posed optimization problem. For each iteration, the variables V and
t are firstly updated by subgradient descent. Then the projection
step can be modified as alternating projecting V onto On and Sn,
respectively. The detailed expressions of the subgradients are de-
rived as (10) and (11) in Appendix 5.1. The projection operations
onto sets On and Sn are given as (12) and (13) in Appendix 5.2.

In summery, the proposed method is described in Algorithm 1.

3. EXPERIMENT RESULTS

Numerical experiments are conducted to verify the proposed graph
signal coarsening method.1 A 150-vertex graph signal (G0, s0) for
testing is illustrated in Fig. 2. The topology is composed of three
50-vertex Erdős-Rényi (ER) random graphs [17] and several ran-
dom edges between the communities. For the vertices of each com-
munity, the signals on them have similar values, with means -0.75,

1The code for these experiments is available at
http://gu.ee.tsinghua.edu.cn/publications#lp1

Fig. 2. The original graph signal (G0, s0) in the vertex domain. The
signals are on a graph consisting of three communities. The signal
values are represented by the red bars.

Fig. 3. The coarsened graph signal (G, s) in the vertex domain.

0.15 and -0.05 respectively, and variances 0.05, 0.03 and 0.01 re-
spectively. The spectral domain of (G0, s0) is shown in Fig. 5(a). It
can be seen that most of the spectral components have small ampli-
tudes, which implies the graph signal can be approximated with only
a small number of frequency components. The 13-term approxima-
tion of (G0, s0) is shown in of Fig. 5(b).

The aiming topology G̃ shown in Fig. 4(a) is obtained by repeat-
edly using a graph coarsening method called Heavy Edge Match-
ing [2], and removing edges with small weights finally. Using the
proposed algorithm, the coarsened graph signal (G, s) is shown in
Fig. 3 for vertex domain and in Fig. 5(c) for spectral domain. As
shown in Fig. 5, the coarsened graph signal (G, s) is almost the
same with the 13-term approximation of (G0, s0) in the spectral do-
main, which achieves the spectral invariance property of the pro-
posed coarsening method. Note that in order to achieve spectral in-
variance, the coarsened graph might get a few edges with very small
weights. Because the resolution of the figures is limited, edges with
very small weights, that is, thinner than 0.02 unit width in Fig. 4(a)
and Fig. 4(b), are not shown in the figures.

Moreover, we are happy to find that the vertex domain of the
coarsened graph signal is also similar with the original graph signal.
As shown in Fig. 2 and Fig. 3, they have similar community struc-
tures, and (G, s) also have similar values inside each community.

The proposed method is to optimize the similarity of G with the
aiming topology G̃ by the constraint of spectral invariance. The dif-
ference between G and G̃ is illustrated in Fig. 4. It can be seen that
tW̃ and W are similar, that is, the Frobenius norm of tW̃ −W is
small. Note that the unit line width in Fig. 4(c) is five times that in
Fig. 4(a) and Fig. 4(b) to illustrate the difference clearly.

4. CONCLUSION

In this paper, we propose a novel graph signal coarsening method
with spectral invariance. Using this method, both the spectrum of
the graph and the spectrum of the graph signal are approximately
kept invariant. The coarsening problem is formulated into a con-
strained optimization problem, which can be solved using projected
subgradient method. Experiment results verify the effectiveness of
the proposed method.
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Fig. 4. The topologies of (a) G̃, (b) G and (c) their difference. G̃ is the aiming topology which is a coarsened graph using topology information
only, and G is the topology of coarsened graph signal. The widths of lines represent the weights of tW̃ and W, respectively. It can be seen
that tW̃ and W are similar, that is, the Frobenius norm of tW̃ − W is small. (c) shows the weight differences, as tW̃ − W. Red lines
represent positive ones and black lines represent the negative. The unit width of (c) is five times that in (a) and (b).
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Fig. 5. The spectral domain representations of (a) the original signal,
(b) the 13-term approximation of original signal and (c) the coars-
ened signal, respectively. The latter two are almost the same in the
spectral domain.

5. APPENDIX

5.1. Subgradient calculation

According to (6), the partial derivative of the entries of L with re-
spect to the variable vi,j is

{
∂lp,q
∂vi,j

}

1≤p,q≤n

=

λj

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,j

0(i−1)×(i−1)

... 0(i−1)×(n−i)

vi−1,j

v1,j · · · vi−1,j 2vi,j vi+1,j · · · vn,j

vi+1,j

0(n−i)×(i−1)

... 0(n−i)×(n−i)

vn,j

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

with only the entries in the ith row and the ith column are nonzero.
According to (8) and (9), the partial derivative of the objective

function F (V, t) with respect to vi,j can be calculated as

∂F (V, t)
∂vi,j

=− 2λj

n∑

q=1

f ′(−li,q)vq,j + 4µλj

n∑

q=1

(li,q − tl̃i,q)vq,j

+ 2λjf
′(−li,i)vi,j + 2λjf

′(li,i)vi,j .

Therefore, the subgradient is

∇VF (V, t) =

{
∂F (V, t)
∂vi,j

}

1≤i,j≤n

=− 2
[
f ′(−L)− 2µ(L− tL̃)

]
VΛ

+ 2
[
In ◦ f ′(−L) + In ◦ f ′(L)

]
VΛ, (10)

where f ′(L) denotes the matrix with entries f ′(lp,q), using the
derivative or subderivative at lp,q .

On the other hand, the gradient of F (V, t) with respect to t can
be calculated as

∇tF (V, t) = 2µ
(
t · tr(L̃L̃T)− tr(LL̃T)

)
. (11)

The variable t can also be updated by the gradient.

5.2. Projection onto two sets

As a special case of Orthogonal Procrustes Problem [18], for any
matrix X ∈ Rn×n, the projection onto On can be obtained by

POn(X) = arg min
Y∈On

∥X−Y∥F = UXVT
X, (12)

where UX and VT
X are the orthogonal matrices in the singular value

decomposition of X,

X = UXΣXVT
X.

Since only the first eigenvalue in Λ is zero, the equation (7) is
equivalent to linear constraints for the entries of V,

n∑

i=1

vi,j = 0, j = 2, 3, · · · , n.

Then for any matrix X ∈ Rn×n, the projection onto Sn can be
derived as

PSn(X) = X− 1
n
1n×nX

[
0 01×(n−1)

0(n−1)×1 I(n−1)×(n−1)

]
. (13)
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