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Villeurbanne, France
celine.robardet@insa-lyon.fr

ABSTRACT

Temporal networks describe a large variety of systems having a tem-
poral evolution. Characterization and visualization of their evolution
are often an issue especially when the amount of data becomes huge.
We propose here an approach based on the duality between graphs
and signals. Temporal networks are represented at each time instant
by a collection of signals, whose spectral analysis reveals connec-
tion between frequency features and structure of the network. We
use nonnegative matrix factorization (NMF) to find these frequency
features and track them over time. Transforming back these features
into subgraphs reveals the underlying structures which form a de-
composition of the temporal network.

Index Terms— nonnegative matrix factorization, temporal net-
works, Fourier analysis, dynamic graphs, multidimensional scaling

1. INTRODUCTION

Many systems associated to networks, whether physical, biological
or social, can be described by graphs [1]. The study of the structure
of these graphs helps us to describe, understand and predict the be-
havior of systems. Often, these systems are not frozen but have a
time evolution, e.g. associated connections which appear and disap-
pear over time, or apparition or disappearance of nodes. We study
here temporal networks where the edges are changing with times,
keeping the same given set of nodes (possibly isolated).

Temporal networks have been introduced and studied in differ-
ent fields under various names. Holmes and Saramäki [2] proposed
a review about temporal networks which includes discussion about
the different types of temporal networks, the measures of the struc-
ture and the associated models. Casteigts et al. [3] also reviewed
some works about dynamic networks with a graph theory approach.
Evolving graphs were also considered as models for social networks
[4] or networks with information spreading [5]. As for visualization,
Xu et al. [6] proposed a method based on multidimensional scaling
(MDS). The temporal networks considered in this work consist in a
series over time of snapshots of graphs, which are static at a given
instant of time.

We propose a new approach based on the duality between graphs
and signals to study temporal networks. Duality between graphs and
signals consists in the transformation from (static) graphs to signals
and inversely, in order to study either signals thanks to graph theory
or graphs with signal processing. Campanharo et al. [7] proposed a
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method where the graphs represent a Markov chain coding the sig-
nals. Haraguchi et al. [8] and later Shimada et al. [9] proposed a
method to transform graphs into time series using classical multidi-
mensional scaling (CMDS). We previously extended this approach
in order to highlight relations between the structure of a graph and
the associated frequency patterns, as well as to visually track tempo-
ral networks by following such patterns [10]. This method has been
exploited to build approximation of the graph over time with an ap-
plication to the study of a bike sharing system in Lyon [11] [12]. The
novelty here is to decompose a whole temporal network, first by ob-
taining frequency patterns by duality and then by using nonnegative
matrix factorization (NMF) [13] to decompose these local spectra of
the temporal network into features associated with weights evolving
over time.

Section 2 recalls the duality mapping from graphs to signals. In
Section 3 we extend the method to temporal networks using NMF
and explain how the features are obtained. Section 4 gives an exam-
ple on a controlled model of synthetic temporal network. A conclu-
sion is given in Section 5.

2. FROM NETWORKS TO SIGNALS

Let G be a simple undirected and unweighted graph with n nodes.
We note (Aij)i,j=1,..,n its adjacency matrix.

2.1. Principle

Shimada et al. [9] proposed a method to transform a graph into a
collection of signals of n points indexed by the vertices of the graph
by using classical multidimensional scaling (CMDS).

This transformation consists in applying CMDS to a matrix dis-
tance between vertices of a graph, noted ∆ = (δij)i,j=1,..,n and
defined for two nodes i, j of G by

δij =

 0 if i = j
1 if aij = 1 and i 6= j
w > 1 if aij = 0 and i 6= j

Following [9], we choose w = 1.1.
Multidimensional scaling (MDS) [14] is a set of mathematical

techniques used to represent measurements of dissimilarity among
pairs of objects as distances between points in a multidimensional
space whose dimension is low. Classical MDS is a particular case of
metric MDS where the dissimilarities are assumed to be Euclidean
distances. The matrix X of coordinates in the low-dimensional,
transformed space can be computed analytically. Starting with the
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(a) Watts-Strogatz model (k = 2, p = 0.01)

(b) Graph with 3 communities

(c) Erdös-Rényi model (p = 0.4)

Fig. 1. (left) Snapshot of the network. (right) Frequency analysis of
the resulting signals. (a) The regularity of the structure of is apparent
as high values on the diagonal of S(k, f). (b) Structure in commu-
nities implies very high magnitudes at low frequencies for the first
components. (c) Random structure leads to a spread of magnitudes
over all frequencies.

distance matrix ∆, we first compute a double centering of the matrix
whose terms are squared : B = − 1

2
J∆(2)J with J = In− 1

n
1n1T

n

where In is the identity matrix and 1n1T
n a n × n matrix of ones.

The CMDS solution is given by X = Q+Λ
1
2
+ with Λ+ a diagonal

matrix whose terms are the eigenvalues of the matrix B sorted in an
increasing order and Q+ is the matrix of the corresponding eigen-
vectors. The resulting signals are the components (or columns) of
the matrix X. The j-th signal is noted X(j).

The inverse transformation from signals to graph is trivial: ac-
cording to the principle of the CMDS, the distance matrix D between
points in the Euclidean space is equal to the distance matrix ∆. The
adjacency matrix A derives clearly from ∆.

2.2. Relabeling of a graph

Shimada et al. [9] showed that ring lattices are transformed into peri-
odic signals: each component is a monochromatic oscillation whose
frequency depends on the index of the component. More generally,
it is relevant to use spectral analysis to link frequency features of sig-
nals with graph properties. Spectral analysis is nonetheless closely
related to the indexation of signals and so to the labeling of the graph.
Finding a good labeling of vertices is therefore essential to avoid
sudden variations of signals. That means that it is necessary to have
close labeling between neighbor vertices, which are defined closer
in the distance matrix than unlinked vertices. This problem can be
related to another graph labeling problem called cyclic bandwidth
sum problem [15]. We proposed in [16] a heuristic that will be used
throughout this paper but not explained further.

# Definition of the steps
1 Transformation of Gt into a collection of signals Xt

2 Frequency analysis of signals: V t = |FXt(f)|
3 NMF: V ≈WH
4 Identification of features W k and levels of activation Hk

5 Transformation into a spectrum Ŷ = W k.eiφ

6 Inverse Fourier transformation: Y = F−1Ŷ
7 Transformation from the signals Y to a graphH

Table 1. Procedure of the analysis of a temporal network. Descrip-
tion of each step is given in Section 3.

2.3. Analysis of signals

Let us consider a collection of K signals indexed by n vertices. We
use the amplitude spectrum of the Fourier transform. From the mag-
nitude of each frequency for each component k ∈ {1, . . . ,K}, this
amplitude reads as:

S(k, f) = |FX(k)(f)| (1)

estimated, for positive frequencies, on F = n
2
+1 bins, F being the

Fourier transform.
Fig. 1 shows that specific graph properties, such as being regular

in degrees (Watts-Strogatz model [1]) or being structured in commu-
nities, have specific frequency patterns. A random structure (Erdös-
Rényi model [1]) is also visible in the spectrum of the collection of
signals as the magnitudes are spread out over all the frequencies.

3. TEMPORAL NETWORK AND NMF

The duality between networks and signals defined in the previous
section enables us to link frequency features with graph properties.
We propose in this section to extend the transformation towards tem-
poral network and use nonnegative matrix factorization (NMF) to
catch these features and follow their level of activation over time.
We finally exhibit a method to build subgraphs from these features
in order to visualize the graph properties highlighted by NMF. Ta-
ble 1 summarizes the steps of our procedure, and the elements we
detailed in this section.

3.1. Transformation of temporal networks

We associate to a temporal network a dynamic graph defined as
a succession of graphs. We note Gt the graph at time t for t =
0, . . . , T − 1 where T is the duration of the considered evolution.
Gt consists of all the nodes and edges activated at time t. We then
define the transformation of such a temporal network into signals as
the transformation of Gt for all t = 0, . . . , T − 1. We note Xt for
t = 0, . . . , T − 1 the collection of signals obtained at time t.

We assume that the number of components K and so the num-
ber of frequencies F is the same at each time step. This assump-
tion can be easily achieved by fixing the number of components as
the maximal number of nodes and zero-padding the missing com-
ponents. We can now define for each component k = 1, . . . ,K

St(k, f) = 2|FX(k)
t (f)| for f = 0, . . . , F − 1 as previously.

St represents T matrices of dimension K × F . For t fixed,
it is possible to reshape the matrix St to a vector of size (KF ) by
successively adding end-to-end the columns of the matrix St. For all
t = 0, . . . , T−1, we can form the matrix V of dimension (KF )×T
where V (t) t-th column of V , is equal to the vectorized matrix St.

1071



3.2. Identification of features

Nonnegative matrix factorization (NMF) [13] is used to decompose
St(k, f) into features and levels of activation over time. NMF can
be written as the following problem: given a nonnegative matrix V
of dimension A× T , find a factorization V ≈WH where W and
H are two nonnegative matrices of dimensions respectively A ×Q
and Q × T , with Q the number of features (usually small). W
is described as the features matrix and H the corresponding levels
of activation over time. Formally the NMF problem almost comes
down to solve:

min
W ,H

A−1∑
a=0

T−1∑
t=0

d([V ]at|[WH]at) (2)

subject to W and H nonnegative matrices. d(x|y) is a scalar cost
function.

Févotte et al. [17] proposed an algorithm to find a solution of the
NMF where the cost function is the β-divergence, a parametrized
function with a simple parameter β which encompasses the Eu-
clidean distances (β = 2), the generalized Kullback-Leibler diver-
gence (β = 1) and the Itakura-Saito divergence (β = 0) as special
cases. Varying β and the number of features Q has not been here
the subject of specific studies. Here β is chosen equal to 1 because
of the spectral origin of V . We will adapt Q to the expected number
of features in the example.

We use NMF to find patterns in spectra of the collections of
signals obtained from the transformation of the temporal network.
At each time t, the t-th column of V (t) represents the vectorized
representation of St(k, f). V of dimension A × T with A = KF
is taken as input of the algorithm.

3.3. Reconstruction of signals from features

The reconstruction of signals from features is tricky considering that
the feature represents only the magnitudes of the spectrum. To ob-
tain a consistent collection of signals, it is necessary to provide some
additional information about the phase. The strategy used here is
based on the assumption that at some specific time step, the consid-
ered feature is the only one activated in the network or is dominant.
That means that the level of activation of the considered feature is
high while levels of activation of other features are low. That leads
to select the time step which maximizes the following criterion: for
q = 0, · · · , Q and t = 0, · · · , T − 1,

t̂q = arg max
t=0,··· ,T−1

(Hqt −
∑

p∈{0,··· ,Q−1}\{q}

Hpt) (3)

Once properly identified, the phase φ of the signals representing the
graph at step t̂q is consistent with the magnitudes and so the most
activated feature.

3.4. Reconstruction of graph from features

The transformation from a feature to a graph is complicated because
the reconstructed signals are not directly derived from a transforma-
tion from graph to signals but have been modified. The distances
between points are neither equal to 1 nor to w but have a distribu-
tion whose width can be variable. Under the assumption that if two
points have a small distance, then the proximity between these points
in the network is high, a reconstruction can be set up such that only
the links associated to the smallest distances are retained. A good
threshold would be the one which maximizes the separation between

e ∈ Ep e /∈ Ep
e ∈ Et−1 1− 10−3 0.9
e /∈ Et−1 0.1 10−3

Table 2. Probability to have an active link in E according to the pres-
ence of this link in Et−1, the active edges in the temporal network at
time t, and Ep the set of edges in the prescribed graph.

the distances which denotes linked pairs of nodes, and the distances
which denotes unlinked pairs of nodes. Nonetheless it might be in
practice very tough to select such a threshold, except manually. We
propose here to use the density of the graph at the best time step as
described previously, to select the number of edges. In order to high-
light visually the structure, we select a higher number of links (1.5
times the density of the original graph).

4. EXAMPLE

This section illustrates the previous sections on an example of a sim-
ulated temporal network which contains specific structures. The aim
of this example is to show that the method is able to separate fea-
tures corresponding to these structures, even in presence of noise or
features coupled between them. The analysis of this network follows
the steps of the procedure described in Table 1.

4.1. Construction of the temporal network

ER COM CYC BAR

Fig. 2. Four snapshots of the models used for the generation of the
temporal network.

The simulated temporal network is generated using the follow-
ing procedure: starting from a graph without links, the algorithm
adds or removes links at each time instant according to a probabil-
ity depending on a prescribed graph. This probability is given in
Table 2 and depends on whether an edge is in the prescribed graph
and whether it exists in the graph at the previous instant. The algo-
rithm runs during 30 time steps for a prescribed graph. Four different
graphs with a constant number of nodes equal to n = 49 have been
used and drawn from the following models:

1. [0, 30] - Erdös-Rényi model p = 0.5 (ER)

2. [30, 60] - Two cliques of variable size (COM)

3. [60, 90] - Cycle graph (CYC)

4. [90, 120] - Barbell model (BAR): two cliques of size 15 con-
nected with a path of length 19

These models represent three different structures which can be
found in networks: random linkage of nodes in model 1, structure
in communities in model 2 and regularity in model 3. Frequency
patterns related to signals describing graphs with these structures
have been highlighted in Fig. 1. The model 4 is a mixture between
structure in communities and regularity.
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4.2. Steps 1-2-3-4: Transformation into signals and identifica-
tion of features with NMF

The graph at each time instant is transformed into a collection of
signals and frequency analyses are performed to obtain the matrix
V with the vectorized spectra at each time at each column. The
NMF algorithm is applied to this matrix using β = 1, the number of
features is Q = 3 and the number of iterations is 3000.

(a) Feature 1

(b) Feature 2

(c) Feature 3

Fig. 3. (left) Features found using NMF, reshaped in a matrix form
to show magnitude of each frequency for each component. Con-
nections can be made with magnitudes found in Fig. 1: feature 1
with (c), feature 2 with (b) and feature 3 with (a). (right) Levels of
activation over time are displayed as well as the four intervals cor-
responding to the four prescribed models used to build the temporal
network.

Fig. 3 displays on the left the obtained features reshaped in a
matrix form to show magnitude of each frequency for each compo-
nent. Connections between frequency patterns highlighted in Fig. 1
and these features can be made. Feature 3 looks like the pattern of
a Watts-Strogatz model of degree k = 2 (Fig. 1a) with high values
on the diagonal. Feature 2 is close to the pattern of a graph with
communities (Fig. 1b) where the magnitudes of low frequencies for
the first components are very high. As for feature 1, the magnitudes
spread out over all frequencies are related to those found for the
Erdös-Rényi model (Fig. 1c). These three structures correspond to
the three models used to build the temporal network.

Levels of activation over time of features are displayed on the
right of Fig. 3, as well as the four intervals corresponding to the four
prescribed models used to build the temporal network. It reveals that
the features are activated at the expected time steps. Feature 3 asso-
ciated to a regular structure is fully activated when the model (CYC)
is active, and activated with less intensity when the prescribed model
is (BAR). For others time steps the feature is close to 0. As to feature
2, linked with structure in communities, it is activated when models
(COM) and (BAR) are actives, composed of cliques. Finally feature

1, corresponding to a random structure, is mainly activated when
model (ER) is active and for model (COM), denoting the random
structure inside communities which are not totally built as cliques.
It is also activated at the beginning of each interval, describing the
random transition between two prescribed graphs.

4.3. Steps 5-6-7: Transformation of features into static graphs

(a) Feature 1

(b) Feature 2 (c) Feature 3

W
Fig. 4. Graphs built from features. (insert) Shape of the distribution
of distances. The vertical line indicates the retained threshold. Ran-
dom structure for feature 1, structure in communities for feature 2
and regular structure for feature 3 are visible.

Construction of subgraphs from features enables us to visualize
the structure of the temporal network when the features are activated.
Fig. 4 displays these subgraphs corresponding to the features. The
layout takes into account the links between nodes and enables us to
have an overview of the structure of these subgraphs. These struc-
tures correspond to the frequency features by similarity with illus-
trations given in Fig. 1. They also correspond to the models we used
to build the graph. NMF is hence able to separate, in a temporal
network with three different structures coupled between them, these
subgraphs. This gives indication about their time instants of acti-
vation. The shape of the distributions of weights used to build the
subgraphs is displayed in insert in order to highlight the difficulty to
choose a good threshold.

5. CONCLUSION

We have proposed a novel method to track the structure of temporal
networks over time using NMF and duality between graphs and sig-
nals. At each time, the temporal network is represented by a graph
which is transformed into a collection of signals. NMF is used to
discover features in the amplitude spectra of these signals; these fea-
tures, whose levels of activation vary over time, represent a specific
structure of the graph. The effectiveness of the method was demon-
strated on a simulated temporal networks containing three types of
structures.

These results provide insights in the characterization of tempo-
ral networks, but also call for further studies, in particular concerning
the parameters in the NMF in this context. The extension to a con-
tinuous model for temporal networks, where some continuity in time
of the transformation into signals, is also worth considering.
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