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ABSTRACT

Through-the-wall radar imaging aims at determining the loca-
tions and velocities of obscured targets. The slow velocities
of indoor targets are in particular difficult to detect and esti-
mate. It is shown by theoretical considerations and simulation
that indirect propagation paths contain significant information
on the target movements, which can be utilized for improved
sensing. We propose a compressive sensing based method
that exploits a multipath model to improve the velocity reso-
lution of the reconstruction. Simulation results demonstrate
the effectiveness of the proposed approach.

Index Terms— Through-the-wall, radar imaging, multi-
path exploitation, compressive sensing

1. INTRODUCTION

Through-the-wall radar imaging (TWRI) has gained attention
due to its ability to acquire accurate information of scenes be-
hind walls or other opaque obstacles utilizing electromagnetic
(EM) wave propagation [1–5].

In many scenarios, it is desirable to obtain information on
both the location and velocity of the targets. High-resolution
images require large apertures and signal bandwidths, trans-
lating into large amounts of data. Resolving the low velocities
of indoor targets may pose an even harder challenge. In par-
ticular, movements parallel to the array (i.e. in the crossrange
direction) cause zero Doppler shift and, as such, are difficult
to detect. Multipath propagation is considered a nuisance if
it cannot be traced back to the target producing it. On the
other hand, if target-multipath association is possible, addi-
tional information on the target velocity can be obtained from
the multipath returns. We propose a multipath exploitation
scheme that improves crossrange velocity resolution.

Earlier work focused on mitigating the effects of multi-
path propagation in TWRI [6]. Later, multipath exploitation
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was examined to improve the performance of the imaging sys-
tem. Extending the imaged region [7] or reducing multipath
ghosts while increasing the signal-to-clutter ratio [8] has been
the next step of research. In order to tackle the huge amount
of data to be acquired and processed, the application of com-
pressive sensing (CS) has been proposed for TWRI. After the
first attempt in [9], others utilize subsequently CS to obtain
high quality images [10–12]. Reconstruction of stationary
and moving targets [12] as well as multipath exploitation of
stationary targets [13, 14] have been investigated in the con-
text of CS.

In this paper, we consider both stationary and moving tar-
gets and aim at exploiting multipath in order to improve the
velocity resolution in the reconstructed scene. A specular
multipath model, developed by the authors in [13], is gener-
alized to include the response of moving targets. The model
is used in a group sparse CS reconstruction to fully utilize
the velocity information contained in the indirect propagation
paths. We present simulation results that illustrate the supe-
rior velocity resolution when exploiting multipath.

The remainder of the paper is organized as follows. The
signal model for pulsed radar operation in multipath environ-
ments is introduced in Section 2. In Section 3, we describe
the proposed CS based reconstruction approach, followed by
a discussion on the concept of apparent Doppler velocity in
Section 4. Supporting simulation results are presented in Sec-
tion 5. We draw conclusions in Section 6.

2. SIGNAL MODEL

In this section, we describe the signal model for an ultra-
wideband multistatic radar system with a single transmitter
and N receivers. The model extends that of [12] to include
target multipath from interior walls.

We assume P point targets, each undergoing a transla-
tory or linear motion with constant velocity in a 2D space.
We consider a coherent processing interval (CPI) of K wide-
band pulses and a pulse repetition interval (PRI) of Tr. The
pulse index k = 0, . . . ,K − 1 is referred to as slow time.
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Hence, if the PRI is sufficiently small, movement of indoor
targets should be approximately of constant velocity and slow
enough so that targets do not move out of a range cell. Note
that stationary targets are also included in this model and cor-
respond to zero velocity. Using these assumptions, we estab-
lish that the pth target at pulse k is located at position

xp(k) = (xp + vxpkTr, yp + vypkTr), (1)

where (xp, yp) is the position of the pth target at t = 0 and
(vxp, vyp) is the corresponding velocity vector.

The emitted pulses are wideband with duration T̃ and can
be expressed as<{s(t) exp(j2πfct)}, where t is the fast time,
s(t) is the pulse in the complex baseband, and fc is the carrier
frequency. The pulses travel through the exterior wall to the P
point targets and are reflected back to the receive array. The
radar return measured by the nth receiver corresponding to
the kth pulse is given by

znk(t) =

P−1∑
p=0

σps (t− kTr − τpn(k))

× exp (−j2πfc (kTr + τpn(k)))

(2)

where σp is the complex reflectivity of the pth point target and
τpn(k) is the bistatic propagation delay from the transmitter
to the pth target and back to the nth receiver. Note that the
delays and the received signal generally depend on the slow
time index k. However, if the pth target has zero velocity, as
in the stationary case, the delays do not change with k.

The discrete model is generated by sampling the targets’
locations and velocities at Np and Nv points, respectively.
Each grid point assumes a certain reflectivity, whereas a non-
existing target can be represented by zero reflectivity. Hence,
in total, we have NpNv possible target states, which can be
stacked into an NpNv × 1 vector σ. The received signal
znk(t) is sampled uniformly at T time steps with sampling
interval Ts. The sampling interval should be chosen to attain
the Nyquist rate of the wideband pulse s(t). The samples can
be stacked into a T × 1 vector znk defined as

znk = Ψnkσ, (3)

where Ψnk are the dictionary matrices, which can be obtained
by discretizing the right hand side of (2).

Stacking all of the received signal vectors {znk, n =
0, . . . , N − 1, k = 0, . . . ,K − 1} results in a TNK× 1 mea-
surement vector z and a TNK×NpNv dictionary matrix Ψ.
Hence, we obtain

z = Ψσ. (4)

The above equation represents the linear model for the
direct returns of the wideband pulsed radar. However, so far,
multipath propagation has not been taken into account, which
is treated in the following subsection.

2.1. Multipath Returns

In a multipath environment, the transmitted pulse may reach
the receiver via an additional reflection at a secondary scat-
terer (usually an interior wall). The two-way propagation
delays can be calculated through geometrical optics prin-
ciples for direct and multipath propagation [13]. The re-
ceiver adds the returns from all possible propagation paths
r = 0, . . . , R− 1, yielding

z = Ψ(0)σ(0) + Ψ(1)σ(1) + · · ·+ Ψ(R−1)σ(R−1). (5)

Note that r = 0 corresponds to the direct path and the re-
maining R− 1 are the multipaths. The dictionaries Ψ(r), r =
1, 2, . . . , R − 1 are defined as in the direct propagation case
except that the two-way delays are calculated for the rth prop-
agation path. We assume an individual target state vector
σ(r) for each path. This is because the phase and amplitude
of the target reflectivity, in general, change with the bistatic
and aspect angles. For notational convenience, path losses
have been absorbed into the corresponding target state vec-
tors. Further note that we assume the same number of propa-
gation paths for each target in (5). This can be done without
loss of generality, as the reflectivity can be set to zero if the
corresponding path is not available for a particular target.

3. GROUP SPARSE SCENE RECONSTRUCTION

Next, we obtain the complete target information, i.e., location
and velocity, using CS principles. A high-dimensional model
is constructed using (5) in order to account for all propagation
paths. Since we aim at obtaining a faithful reconstruction us-
ing a reduced set of measurements in (5), the corresponding
signal model can be expressed as,

z̄ = ΦΨ̃σ̃, (6)

where Ψ̃ = [Ψ(0) Ψ(1) · · · Ψ(R−1)] ∈ CTNK×NpNvR is the
concatenated overcomplete dictionary for all possible paths
and Φ is a suitable downsampling operation as described in
[12]. The unknown target reflectivity vectors are stacked to
form one tall vector

σ̃ =

[(
σ(0)

)T (
σ(1)

)T
· · ·
(
σ(R−1)

)T]T
∈ CNpNvR. (7)

Given the reduced measurements z̄ in (6), we aim at re-
covering the target state information σ̃ using CS reconstruc-
tion. Similar to [13], we exploit multipath by utilizing the
group sparse structure in the target state information. The
state vectors σ(r), corresponding to the R paths, exhibit a
group sparse structure, where the individual groups extend
across the paths for each target state. Note that the appar-
ent Doppler speed for a particular target may differ when ob-
served through different paths. This, however, is incorporated
in the model, as delays τ (r)pn (k) depend on the slow time and
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(a) Direct path (b) First order multipath via right side wall (c) Second order multipath via right side wall

Fig. 1. Apparent Doppler velocity for a target moving with velocity (1, 0)m/s.

are all calculated based on the same coordinate system. In
this way, the reconstruction benefits from additional diversity
in the received signal due to different Doppler shifts from the
same target.

Employing a group sparse reconstruction approach results
in the optimization problem

σ̂ = arg min
σ̃
‖z̄ −ΦΨ̃σ̃‖22 + λ‖σ̃‖1,2, (8)

where

‖σ̃‖1,2 =

NpNv−1∑
p=0

∥∥∥∥[σ(0)
p , σ(1)

p , . . . , σ(R−1)
p

]T∥∥∥∥
2

(9)

and λ is a regularization parameter. (8) can be solved using
SparSA [15] or other available schemes [16, 17].

Once a solution σ̂ is obtained, the individual target state
vectors can be combined non-coherently to form a compos-
ite target state vector. The final recovery result contains the
information of the location and the translatory motion of all
targets. For an in-depth treatment of the group-sparse recon-
struction approach, refer to [13].

4. APPARENT DOPPLER VELOCITY

In order to motivate the exploitation of multipath, we examine
the information contained in the multipath returns. A target
at position (xp, yp) moving with velocity (vxp, vyp) has an
apparent Doppler velocity vD. In the case of direct propaga-
tion, this is simply the radial velocity component with respect
to the center of the array. However, if the wave travels on
an indirect path, this apparent Doppler velocity changes. The
multipath can be cast as direct propagation to a virtual array,
whose element locations are dictated by the physical array
and the secondary scatterers (interior walls). As such, for ap-
parent Doppler velocity corresponding to multipath propaga-
tion, the radial velocity component with respect to the center
of the corresponding virtual array is a relevant measure. The
apparent Doppler velocity may also be approximated using
the propagation delays. Depending on the receiver n, the path
r, and averaging over the full CPI, the apparent Doppler ve-

locity for the pth target may be expressed as

v
(r)
D,pn =

1

K − 1

K−2∑
k=0

c
τ
(r)
pn (k + 1)− τ (r)pn (k)

Tr
. (10)

For illustration, we simulate a target at an arbitrary loca-
tion within three walls, moving with a velocity (vxp, vyp) =
(1, 0)m/s. Hence, the target is solely moving in the crossrange
direction and the apparent Doppler velocity is zero in the
broadside direction of the array. At each assumed target po-
sition, the apparent Doppler velocity is color coded in Fig. 1.
The surrounding walls are also superimposed on the figure. In
the direct propagation case, shown in Fig. 1a, we observe the
expected pattern, with zero velocity along broadside and grad-
ually increasing velocity for angles deviating from broadside.
However, the pattern is different for an indirect path, reach-
ing the target via reflection at the right side wall, as shown
in Figs. 1b,c. Fig. 1b corresponds to a first order multipath
that involves direct propagation on transmit and a secondary
reflection at the right side wall on receive, whereas Fig. 1c
involves a secondary reflection at the right side wall on both
transmit and receive. The patterns in Figs. 1b, c are shifted
and distorted as compared to Fig. 1a. In particular, the zero
velocity line is shifted as compared to that in Fig. 1a. Hence,
we obtain additional information on target motion through the
first and second order multipath returns. If properly modeled,
as described earlier, this property is exploited to improve the
velocity estimation.

5. SIMULATION RESULTS

Simulations were performed for a wideband real aperture
pulse-Doppler radar with one transmitter and a uniform lin-
ear array with N = 11 receivers. A modulated Gaussian
pulse, centered at fc = 2 GHz, with a relative bandwidth of
50% is transmitted. The PRI is set to 10 ms and K = 15
pulses are coherently processed. At the receive side, T = 150
fast time samples in the relevant interval, covering the target
and multipath returns, are taken at a sampling rate of 4 GHz.
The receive array with 10 cm interelement spacing is centered
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(a) Direct path only (R = 1) (b) First order multipaths only (R = 5) (c) All multipaths (R = 7)

Fig. 2. CS reconstruction results for various amounts of multipath.

around the transmitter and is located parallel to the exterior
front wall at 3 m distance. The front wall is modeled with
20 cm thickness and relative permittivity of 7.66. Two side
walls are considered at±2 m that cause 3 different multipaths
each. There are in total 4 first order multipaths and 2 second
order multipaths, i.e., R = 7 paths are considered in the
received signal. We do not consider any front wall returns
as they can be removed by time-gating [12] or using other
wall mitigation techniques [18–20]. As we intend to focus
on velocity estimation, we keep the target(s) fixed at 4 m
downrange in the broadside direction of the receive array.

First, we show that the additional information on the
target velocity contained in the multipath returns can be
exploited to improve the velocity resolution. We employ
the proposed CS reconstruction scheme to resolve two tar-
gets with similar velocities. Both targets reside in the same
range/crossrange cell, but move in opposing crossrange di-
rections. The velocities differ by only 0.8 m/s. Further, we
reduce the number of measurements to one-half of the receive
elements and one-third of the fast time samples. We show the
results for different numbers of multipath: the direct propa-
gation path only, five propagation paths (first order multipath
returns only) and all seven paths as described above. As evi-
dent from Fig. 2, the velocity resolution capabilities improve
with incorporation of an increasing number of multipath re-
turns. If only the direct path is available, the two moving
targets cannot be resolved. If the four first order multipath re-
turns are included and exploited, the two targets are resolved,
but the velocity estimates are biased. Finally, if all seven
paths are available and exploited, the two moving targets are
resolved with accurate velocity estimates.

Further, we quantify the resolution performance for vari-
ous number of multipaths. We use the same setup as in the
previous example. However, we change the velocity differ-
ence from 0.4 m/s to 2 m/s in steps of 0.4 m/s. We also con-
sider the total number of paths, R, to be one, five, six, and
seven, i.e. direct path only, first order multipaths only, and
one or both second order multipaths. We repeat the experi-
ment 100 times and use a simplistic detection scheme to get

Fig. 3. Crossrange resolution performance for various
amounts of multipath.

an upper bound on the performance. More specifically, we
take the two strongest pixels and check if they correspond
to the true target velocities. While in real life this detection
scheme is not feasible, it serves as a suitable metric to provide
a fair comparison for the examined cases. The results are de-
picted in Fig. 3. It can be seen that without multipath, the two
velocities cannot be resolved at all. For increasing number
of multipath returns, the resolution capabilities improve. For
R = 7, we can (almost) perfectly resolve even the smallest
velocity difference. As evident from the above results, it is
advantageous to exploit the information contained in the mul-
tipath returns for improved scene reconstruction.

6. CONCLUSION

Based on a multipath propagation and motion model for in-
door targets in TWRI, we proposed a CS based reconstruc-
tion approach that exploits target-wall multipath to improve
target velocity estimation. The model does not require resolv-
able multipaths and, as such avoids the need for associating
radar returns with the interior reflecting walls. Simulations
demonstrated the merits of multipath exploitation in enhanc-
ing imaging resolution, which generally benefits from an in-
creased number of multipath returns that may encompass first
and second order types of reflections.
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