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ABSTRACT

We consider the design of a multicoset sampling pattern to be used
in power spectrum blind sampling (PSBS). The criterion for the
PSBS pattern design that we propose is based on the minimiza-
tion of the mean square error of the power spectrum estimate. The
design framework appears as a constrained optimization problem,
whose complexity increases with the pattern length. We solve such
a constrained optimization problem in terms of nonlinear integer
programming by using exhaustive search.

Index Terms— Compressed sensing, spectrum sensing, power
spectrum blind sampling, minimum mean square error, multicoset
sampling, sparse rulers.

1. INTRODUCTION

Cognitive radio (CR) is a radio interface that opportunistically ex-
ploits the vacant frequency band (see, e.g., [1, 2]). Thus, a CR sys-
tem continuously senses the spectrum, dynamically identify the idle
spectrum, and operate in the unoccupied spectrum [3, 4, 5]. In this
context, spectrum sensing techniques have to deal with multiband
signals, which jointly cover a wide spectral band with a significant
number of spectral holes.

Some of the previous works that have addressed the problem of
compressed spectrum sensing for multiband signals propose a sam-
pling scheme based on compressed sensing theory [6, 7] that guaran-
tees perfect signal reconstruction [8, 9, 10, 11, 12]. However, we will
focus here on the approaches that can be classified as power spec-
trum blind samplers [13, 14, 15, 16], which exploit the fact that for
power spectrum estimation only covariance information is of inter-
est, and sampling rate reduction can be achieved even for non-sparse
signals.

Thus, in this paper, we consider the design of sampling pat-
terns for a power spectrum blind sampling scheme (or compressive
power spectrum estimation) , namely herein PSBS pattern (PSBSP).
In previous works, minimal sparse rulers (SRs) are proposed as sam-
pling patterns. Our aim is alternatively to consider the final power
spectrum reconstruction performance when designing the sampling
stage. Therefore, we define sampling patterns that minimize the
mean square error (MSE) of power spectrum estimate. To ensure full
power spectrum reconstruction in a similar fashion to [14, 12, 16],
new constraint of certain quantities is imposed herein by means of
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an existence condition of the pseudo inverse of a pattern correlation
matrix.

2. PROBLEM STATEMENT

Consider a complex-valued wide-sense stationary signal x(t) with
bandwith B. Our aim is to sample this signal at a rate lower than the
Nyquist frequency 1/T , such that the power spectrum of x(t) can be
accurately estimated.

For the acquisition stage, we consider a multicoset sampling
strategy [8] implemented with M interleaved analog-to-digital con-
verters working at a rate 1/NT , being 1/T the Nyquist sampling
rate and N the block length. This sampling device can be modeled
as in [16, 14]: a high rate integrate and dump process followed by
a bank of M branches, consisting each of one of a filtering opera-
tion followed by a downsampling operation, as illustrated in Figure
1. Taking into account that multicoset sampling consists of selecting
M Nyquist-rate samples in each block of length N , the coefficients
of the filter ci[n], i = 1, . . . ,M , can be written as

ci[n] =

{
1, n = −ni,

0, n 6= −ni,
(1)

where there is no repetition in ni, i.e.

ni 6= nj , ∀i 6= j. (2)

Fig. 1. Digital model of the sampling device.

The output of the i-th branch of this PSBS scheme is given by

yi[k] = zi[kN ], (3)

where zi[·] is given by

zi[n] = ci[n] ∗ x[n] =
0∑

m=1−N

ci[m]x[n−m]. (4)
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In Compressive Power Spectrum Estimation, the objective is to
estimate the power spectrum of x(t) from the subNyquist samples
{yi[k]}i,k, that is, to estimate the power spectrum spectrum of x[n],
which is equivalent to obtain the autocorrelation function of x[n]
given by rx[n] = E{x[m]x∗[m− n]}. In [16], Ariananda and Leus
propose a method to recover the autocorrelation function rx[n] given
the cross correlations ryi,yj [k], for i, j = 0, . . . ,M − 1, given by

ryi,yj [k] = E{yi[l]y
∗
j [l − k]}. (5)

They show that

ryi,yj [k] =

1∑
l=0

rTci,cj [l]rx[k − l], (6)

where

rci,cj [k] =
[
rci,cj [kN ] rci,cj [kN − 1]

· · · rci,cj [(k − 1)N + 1]
]T
,

(7a)

rx[k] =
[
rx[kN ] rx[kN + 1]

· · · rx[(k + 1)N − 1]
]T
. (7b)

By cascading all these cross correlation functions they compose
vector ry[k] = [. . . , ryi,yj [k], . . .]

T , which can be written as:

ry[k] =

1∑
l=0

Rc[l]rx[k − l], (8)

where

Rc[k] =
[
rc0,c0 [k] · · · rc0,cM−1 [k]

rc1,c1 [k] · · · rcM−1,cM−1 [k]
]T
, (9)

From this equation, and after some algebrtaic manipulations, they
arrive to the following matrix equation:

ry = Rcrx, (10)

where ry ∈ C
1
2
M(2L+1)(M+1)×1 and rx ∈ CN(2L+1)×1 are given

by

ry =
[
rTy [0] · · · rTy [L] rTy [−L] · · · rTy [−1]

]T
, (11a)

rx =
[
rTx [0] · · · rTx [L] rTx [−L] · · · rTx [−1]

]T
, (11b)

with L being a design parameter related to the support of rx[k] and
Rc ∈ C

1
2
M(2L+1)(M+1)×N(2L+1) is given by

Rc =



Rc[0] O · · · O Rc[1]
Rc[1] Rc[0] O · · · O

O Rc[1] Rc[0] O
...

...
. . .

. . .
. . . O

O · · · O Rc[1] Rc[0]

 , (12)

withO being a dimension-coresponding zero matrix.
The power spectrum of x[n] can be writtten as sx = F2L+1rx,

being Fn ∈ Cn×n the DFT matrix of size n. From (10), a Time
Domain (TD) estimator for the power spectrum is proposed as [16]

ŝx = F(2L+1)N

(
RH

cRc

)−1

RH
c r̂y, (13)

where r̂y ∈ CM2(2L+1)×1 is an estimate of ry. An unbiased esti-
mator of ry can be obtained using that

r̂yi,yj [k] =
1

K − |k|

K−1+min(0,k)∑
l=max(0,k)

yi[l]y
∗
j [l − k], (14)

where K is the number of measurements.
From (13), it is clear that the selected sampling pattern has to

lead to a full column rank matrix Rc. In [16], a suboptimal solu-
tion for the sampling patterns is proposed based on Minimal Sparse
Rulers. Our contribution in this paper is the design of multicoset
sampling patterns that lead to a full column-rank matrixRc and, at
the same time, provide a time domain, minimum mean square error
estimaton of the power spectrum.

3. DESIGN OF THE MULTICOSET SAMPLING MATRIX

Let Cr̂y ∈ CM2(2L+1)×M2(2L+1) be the covariance matrix of the
estimate of ry, defined as

Cr̂y = Ex
{
(r̂y − Ex {r̂y}) (r̂y − Ex {r̂y})H

}
. (15)

In what follows, we assume that the PSBSP length, i.e. M , is known.
Next we consider an assumption that restricts the input signal x[n]
to a certain class. However, in real application, e.g., in numerical
simulation, the result derived from this assumption can be used for
any signal waveform. Let the second-order statistics of x[n] be

Ex {x[n]x∗[m]} = σ2
xδ[n−m], ∀m,n, (16a)

Ex {x[n]x[m]} = 0, ∀m,n, (16b)

where σ2
x is the variance of x[n]. Under the assumption of circularly-

symmetric complex-valued zero-mean signal with the second-order
statistics in (16), it is shown in [16, eq. (45)] that Cr̂y in (15) holds
a block-diagonal structure according to

Cr̂y =


. . . · · · O
... Cr̂y r̂y [k]

...

O · · ·
. . .

 , (17)

for k ∈ {0, 1, . . . , L,−L, . . . ,−1}, where Cr̂y r̂y [k] ∈ CM2×M2

is the covariance matrix of the estimate of ry[k] given in (18) shown
on top of the next page. By observing

Cr̂y r̂y [k] =
1

K − |k|KCr̂y r̂y [0], (19)

we have
Cr̂y = K

(
Λ(β)⊗Cr̂y r̂y [0]

)
, (20)

where β ∈ R(2L+1)×1 is given by

β =
[

1
K

1
K−1

· · · 1
K−L

1
K−L

· · · 1
K−1

]T
. (21)

Let us introduce a vector of indices n ∈ NM×1

n =
[
n0 n1 · · · nM−1

]T
. (22)

These indices correspond to the positions of the Nyquist rate
samples to be obtained when acquring the signal, that is, the indices
of ci[n] which contain a nonzero element. Our goal is to find vector
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Cr̂y r̂y [k] =
1

K − |k|σ
4
x


rc0,c0 [0]r

∗
c0,c0 [0] rc0,c0 [0]r

∗
c0,c1 [0]

rc0,c0 [0]r
∗
c1,c0 [0] rc0,c0 [0]r

∗
c1,c1 [0]

...
...

rcM−1,c0 [0]r
∗
cM−1,c0 [0] rcM−1,c0 [0]r

∗
cM−1,c1 [0]

· · · rc0,cM−1 [0]r
∗
c0,cM−1

[0]
· · · rc0,cM−1 [0]r

∗
c1,cM−1

[0]

. . .
...

· · · rcM−1,cM−1 [0]r
∗
cM−1,cM−1

[0]

 . (18)

n that leads to a minimum MSE estimation of the power spectrum
of the acquired signal. To this aim, we define the cost function to be
minimized as fTD−MSE(n), a scaling amount of the mean square
error (MSE) of the power spectrum estimate defined in (13), given
by

fTD−MSE(n) =
Ex
{
‖ŝx − sx‖2E

}
N(2L+ 1)

(
1
K

+ 2
L∑

l=1

1
K−l

)
σ4
x

(23)

where ‖ · ‖E is the Euclidean norm.
With this formulation we will find next the sampling patterns

that minimize this function, and at the same time, provide a full
column-rank Rc matrix. To reach this objective, we need to obtain
first an explicit form of the cost function in (23).

Proposition 1 (TD-MSE Function). By assuming the input signal
x[n] to be a circularly-symmetric complex-valued random process
with the second-order statistics according to (16), the MSE function
fTD−MSE(n) in (23) is given by

fTD−MSE(n) =

M−1∑
m1=0

M−1∑
m2=0

1

α2
1−(nm2

−nm1
)(n)

+
1

α2
N+1−(nm2−nm1 )(n)

,

(24)

where αnr (n) ∈ Z1×1 for nr ∈ {1, 2, . . . , N} is given by

αnr (n) =

M−1∑
m1=0

M−1∑
m2=0

δ[−nr + 1− (nm2 − nm1)]

+ δ[N − nr + 1− (nm2 − nm1)].

(25)

The derivation of these equations is provided in [17].
Since the signal is assumed to be temporally-white Gaussian

random, its power spectrum is well known to be flat. One may ob-
serve that it is unnecessary to estimate the power spectrum at all,
because the power spectrum is known a priori and should be flat ac-
cording to the Gaussian signal assumption. We, however, will not
restrict the result in (24) to only the Gaussian signal or a signal with
an extremely low signal-to-noise ratio. The noise-like Gaussian sig-
nal assumption paves the way for an alternative multicoset sampling
pattern design based on minimum mean square error criterion, which
outperforms, as we will see later, the minimal sparse rulers proposed
in [16]. Similar to the derivation of (24) in the proof of Proposition
1, the extension of the MSE function derivation to any signal with
a specific power spectrum shape is possible, when i) the covariance
matrix Cr̂y in (15) is known in advance, or ii) a consistent estimate
of Cr̂y is available. However, the computation is intensive. Fur-
thermore, there is no guarantee that the final expression of the MSE
function can be written in an explicit form as same as in (24), which
may later affect the optimization complexity.

The result of Proposition 1 brings an insight into a sufficient con-
dition such that the power spectrum reconstruction in (13) is perfect.

Lemma 1 (Power Spectrum Reconstruction Condition). Under the
assumption of circularly-symmetric complex-valued zero-mean sig-
nal with the second-order statistics in (16), the power spectrum esti-
mation in (13) is valid, when

αnr (n) ≥ 1, ∀nr ∈ {1, 2, . . . , N}. (26)

Proof of this lemma is given in [17].
The expression of the MSE function in Proposition 1 is not the

final form we will use. We obtain a more concentrated form, which
can reduce the computational burden, as follows.

Lemma 2 (TD-MSE Function Refinement). The TD-MSE function
in (24) yields

fTD−MSE(n) = 2f̃TD−MSE(n), (27)

where f̃TD−MSE(n) is given by

f̃TD−MSE(n) =

M−1∑
m1=0

M−1∑
m2=0

1

α2
1−(nm2

−nm1
)(n)

. (28)

A straightforward derivation of (27) given (28) is provided in
[17].

For nr = 1 and nr = N + 1, we can see that

α1(n) =M, (29a)
αN+1(n) =M. (29b)

Let n0 be zero, i.e. n0 = 0. From (29a) and (28), the optimization
problem for the TD approach can be finally written as:

n̂TD−MMSE

= argmin
n
f̃TD−MSE(n)

s.t.

αnr (n) ≥ 1,

∀nr ∈ {2, 3, . . . , b
1

2
Nc+ 1},

n0 = 0,

nM−1 = b1
2
Nc,

nm ∈ {nm−1 + 1, . . . , b1
2
Nc −M +m+ 1},

∀m ∈ {1, 2, . . . ,M − 2}.

(30)

4. NUMERICAL EXAMPLES

A circularly-symmetric complex-valued Gaussian signal is passed
onto a digital filter as in [16]. The filtered signal has the first band
as a rectangular shape that occupies the normalized frequency from
−0.9π to −0.65π, the second band from 0.1π to 0.35π, and the
third band from 0.55π to 0.8π. We have solved the optimization
problem in (30) using the ES. Furthermore, we generate a set of
random sampling points, which are redundant and not overlapped
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Sampling Patterns for N = 39

nSR [0 1 10 11 13 15 17 19]T

n̂MMSE#1 [0 1 2 5 10 13 17 19]T

n̂MMSE#3 [0 1 3 7 9 14 18 19]T .

Table 1. Designed sampling patterns for K = 1,786, L = 2, M0 =
8, N = 39, NR = 1,000.

Sampling Patterns for N = 78

nSR [0 1 12 15 26 29 31 33 35 37 39]T

n̂MMSE#1 [0 1 2 10 15 16 28 32 35 37 39]T

n̂MMSE#5 [0 1 2 10 15 16 28 32 35 37 39]T

Table 2. Designed sampling patterns for K = 1,786, L = 2, M0 =
11, N = 78, NR = 1,000.

with the designed sampling patterns, i.e. from b 1
2
Nc+ 1 to N − 1.

The purpose is to see how the additional redundant sampling points
affect the designed sampling patterns.

Tables 1, 2 and 3 show the designed sampling patterns for dif-
ferent parameters, in addition to the sparse rulers of the same length.

Sampling Patterns for N = 128

nSR [0 1 3 6 13 20 27 34 41 48 55

59 63 64]T

n̂MMSE#1 [0 1 2 6 8 20 29 38 47 50 53

60 63 64]T

n̂MMSE#2 [0 1 3 9 13 22 30 39 46 50 57

61 62 64]T

Table 3. Designed sampling patterns for K = 1,786, L = 2, M0 =
14, N = 128, NR = 1,000.

Fig. 2, Fig. 3, and Fig. 4 show the theoretical and simula-
tion results in terms of the normalized MSE in the estimate of the
power spectrum as a function of the compression ratio M/N . It can
be clearly observed that MMSE sampling patterns outperform min-
imal sparse rulers, and that the gain increases when the compres-
sion ratio decreases. For (M0, N) = (8, 39) in Fig. 2, the MMSE
patterns slightly outperforms the minimal-SR patterns in low com-
pression ratio. However, when the compression ratio approximately
is greater than 0.359, the MMSE patterns starts to provide worse
error performance than the minimal-SR patterns. In Fig. 3 and
Fig. 4, one can see that in the cases of (M0, N) = (11, 78) and
(M0, N) = (14, 128) the MMSE patterns provide lower NMSE
than the minimal-SR patterns in the entire range of the compression
ratio, unlike the case of (M0, N) = (8, 39). The performance im-
provement by the MMSE patterns is more significant in the case of
(M0, N) = (14, 128) than in the case of (M0, N) = (11, 78).

5. CONCLUSIONS

We have derived the cost function to be optimized in order to design
a sampling pattern that minimizes the MSE of a power spectrum es-
timate. The constrained optimization problem has been solved by
using ES. The minimal-SR pattern previously proposed is shown to
be fairly comparable to the PSBSP design based on the MMSE in
terms of the MSE for short PSBSPs, while the MMSE-based PSB-
SPs outperform those based on minimal-SR for long PSBSPs.
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