
BAYESIAN ANALYSIS OF SIMILARITY MATRICES FOR SPEAKER DIARIZATION

Alexey Sholokhov2,3, Timur Pekhovsky1,3, Oleg Kudashev1,3, Andrei Shulipa1, Tomi Kinnunen2

1Speech Technology Center Ltd., St. Petersburg, Russia
2School of Computing, University of Eastern Finland

3 ITMO University, Russia∗
{sholohov, tim, kudashev, shulipa}@speechpro.com, tkinnu@cs.uef.fi

ABSTRACT

Inspired by recent success of speaker clustering in Total Variabil-
ity space we propose a new probabilistic model for speaker diariza-
tion based on Bayesian modeling of pairwise similarity scores. The
recordings are represented by symmetric similarity matrices of like-
lihood ratio scores from probabilistic linear discriminant analysis
(PLDA) trained on short-term i-vectors. We employ Bayesian ap-
proach to address the problem of unknown number of speakers in
conversation. Diarization error rates on the NIST 2008 SRE tele-
phone data indicate comparable performance with state-of-the-art
eigenvoice-based diarization. But unlike the eigenvoice approach,
our method finds the number of speakers automatically, making the
proposed model more viable for practical applications.

Index Terms— Speaker diarization, variational Bayesian infer-
ence, similarity matrix

1. INTRODUCTION

The goal of speaker diarization [1, 2] is to determine how many
speakers there are in a given speech recording, and to segment the
recording so that each part corresponds to one speaker. There are
two dominant approaches to speaker diarization. The first and the
most common approach consist of two stages: speaker change point
detection followed by speaker clustering. The second approach as-
sumes that the signal is divided beforehead into short (typically half-
second) segments that are directly clustered. We adopt the latter
approach.

In recent years, rapid progress in text-independent speaker ver-
ification has influenced other areas of speech technology, including
speaker diarization. In particular, the idea of using an eigenvoice
(EV) prior for speaker diarization was first proposed in [3]. In that
paper, as well as in the subsequent studies using a weak eigenvoice
prior [4, 5], the diarization procedure is reduced to indexing short
segments of speech, which circumvents the problem of detecting the
speaker change points. The weak EV prior implies that the maximum
a posteriori (MAP) estimate of speaker latent variable is indepen-
dently calculated from short segments, causing the number of eigen-
voices to be bounded from above by 10–20 [4, 5]. In contrast to these
studies, in [3] latent identity variables are estimated from the full
recording, which increases the number of eigenvoices to 200–300,
therefore, implementing a strong eigenvoice prior. It yields a con-
siderable improvement of the performance for NIST 2008 SRE tele-
phone dialogue diarization among systems using this kind of prior.
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Fig. 1. (a) A graphical model of the proposed generative model (hy-
perparameters are not shown) (b) An example of similarity matrix
calculated for conversation of four speakers. Rows and colums are
ordered according to ground truth labels.

Unfortunately, as demonstrated by our experiments, the EV ap-
proach [3] has a major drawback: it is incapable for automatic se-
lection of the number of speakers within the recording (i.e. model
selection). More specifically, we have observed that the variational
lower bound increases monotonically with the number of speakers
in most cases. In the system of [4], the authors address this problem
in a standard way by applying the classical Bayesian information
criterion (BIC), though only at the cost of switching to a weak EV
prior. As a consequence, their diarization result is behind that of [3]
on 2008 NIST dialog database, but only if the number of speakers is
known beforehand.

The idea of using strong prior information obtained from large
datasets was further developed in studies that first adopted i-vectors
as features for speaker diarization [6, 7, 8]. For example, [6] not
only showed that diarization can be successfully carried out directly
in the i-vector space, but it also achieves state-of-the-art performance
on conversational telephone data from the 2008 NIST SRE corpus.
Unlike [4], model selection in [8] was performed in terms of iterative
variational lower bound maximization, defined for the full recording.

Proposed method and its relation to earlier studies: In this
paper we propose a similarity based clustering method utilizing i-
vectors. In contrast to [8], we do not carry out diarization in the
i-vector space directly, but use a similarity matrix constructed from
pairwise segment scores in the given recording (Fig. 1). Thus, our
model does not impose an explicit model for the data distribution,
but instead analyzes the structure of relations between data points. A
well-known related method is spectral clustering [9], which analyzes
the eigenstructure of a similarity matrix. For example, [7] applies
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spectral clustering to diarization using the matrix of i-vector cosine
similarities as an input.

Unfortunately, although spectral clustering methods can detect
non-Gaussian clusters of complex shape, they usually fail in identi-
fying noisy or partially overlapping clusters. These problems were
addressed in [10] by introducing a probabilistic model for handling
noise in data and employing maximum likelihood estimation of the
model parameter. Inspired by [10], we present a generative proba-
bilistic model for similarity matrices that tackles the problems of the
spectral clustering method and uses fully Bayesian inference to au-
tomatically determine the number of clusters (speakers) in the data.

In [8], Gaussian mixture model (GMM) based clustering was ap-
plied to speaker diarization, treating i-vectors as points in Eucludean
space regardless of their nature. Compared to [8], the main advan-
tage of the proposed approach is that the model uses additional prior
knowledge from learned speaker verification metric. We adopt the
current state-of-the-art speaker verification model, probabilistic lin-
ear discriminant analysis (PLDA) [11], as a similarity measure be-
tween pairs of speech segments.

Finally, our model is related to the problem of detecting com-
munities in social networks. Typically the graph of such a network
is represented by an adjacency matrix whose elements can be either
binary (presence of the link) or real-valued (strength of the connec-
tions). Authors of [12] developed a generative model for such matri-
ces in order to find communities (densely-connected sub graphs of
the original graph) in sparsely connected networks.

2. PRELIMINARIES

2.1. Total Variability

Contemporary state-of-the-art speaker recognition systems operate
in total variability space based on a pre-trained universal back-
ground model (UBM) with factor analysis prior on mean supervec-
tors [13]. The total variability model is given by,

x = µ+ Tw,

where x is mean supervector, µ is a constant offset taken from the
UBM, T is a rectangular matrix which defines the total variability
subspace and w is a low-dimensional latent vector with standard
normal distribution [13]. The maximum a posteriori estimate of w
is known as the i-vector of the utterance.

2.2. Probabilistic Linear Discriminant Analysis (PLDA)

Given a collection of i-vectors {w1, ...,wH}, each corresponding to
one recording of the same speaker, the Gaussian PLDA model [14]
assumes that the i-vectors are distributed according to:

wh =m+ V y + εh,

where m is a constant speaker- and session-independent mean, y is
the latent speaker identity variable which has a standard normal prior
and εh is a Gaussian residual with zero mean and full-covariance
matrix. The PLDA model provides a closed-form expression for
the likelihood ratio of two alternative hypotheses: (1) both vectors
belong to the same speaker and (2) the vectors belong to different
speakers. We use this likelihood ratio as a similarity measure for a
pair of speech segments.

2.3. Adopting PLDA for Diarization

In speaker verification, i-vectors are extracted from full-length ut-
terance, usually of several minutes in duration. Diarization, on the
other hand, is a segmentation task where scores are computed from
short segments. Therefore, we train the PLDA hyperparameters us-
ing i-vectors extracted from short segments. The PLDA training ut-
terances contain only one session per speaker. We observed a slight
improvement compared with training on full utterances. Another
critical design consideration is the choice of the segment length. For
very short segments, i-vector estimate is noisy. For long segments,
in turn, separability of the target and impostor score distributions in-
creases, but the number of mixed segments containing speech from
more than one speaker increases, too. We found the optimal length
to be in the range 0.5 – 1 sec. Following [15], we apply length nor-
malization to i-vectors to compute PLDA scores.

A similar stage in speaker diarization system has been described
in [16] but, instead of PLDA, the authors used support vector ma-
chine and additional set of utterances to construct similarity matrices
fed as an input to agglomerative clustering algorithm.

3. PROPOSED MODEL

3.1. A Generative Model for Similarity Matrices

If we ignore any temporal relations between feature vectors, the di-
arization task coincides with the clustering task. A common ap-
proach to data clustering is to construct a model in which data are
generated from a mixture of probability distributions. In a conven-
tional diarization setting, such as [3, 8], each mixture component
corresponds to a speaker-specific distribution of feature vectors, ex-
tracted from a segment of the input signal. But in our proposed
model, a speech segment is represented not by the feature vector but
by the vector of similarity scores with all the other segments of the
signal. Let dij be a similarity score (PLDA likelihood ratio) between
segments i and j. Now assume that the data consists of K clusters
and is represented by the similarity matrixD of sizeN×N with en-
tries {dij}Ni,j=1. This matrix includesK(K−1)/2 groups of impos-
tor (between-cluster) scores and K groups of target (within-cluster)
scores. If we rearrange the matrix rows and columns according to
the cluster (speaker) labels, it has a block structure, where the block
Dlm contains the scores for all pairs of segments belonging to l-th
and m-th clusters. Diagonal blocks contain the targets scores, and
off-diagonal blocks the impostor scores. For well-separated clusters,
scores in each block tend to have similar values but at the same time
differ from the values of the other blocks. This is the main assump-
tion in our model (see Fig. 1 (b)).

To formulate our model, we define the following distribution for
the elements of the similarity matrix:

p(dij |z,θ) =
K∏

l,m=1
l<m

p(dij |θlm)z
m
i zlj+z

l
iz

m
j

K∏
k=1

p(dij |θk)z
k
i z

k
j .

(1)
Here, θlm are the parameters of the score distribution for block lm
and z denotes cluster assignment for the i-th segment. Parameters
θkk correspond to diagonal blocks (target scores) and θlm to the im-
postor scores. Since we assume symmetric similarity scores, nota-
tion zliz

m
j +zmi z

l
j means that there are two possibilities for score dij

to get into lm-th block: i-th segment belongs to l-th cluster and j-th
segment belongs tom-th cluster, or vice versa. In summary, we have
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individual distributions for each pair of disjoint clusters and one dis-
tribution for each block of within-class scores. This model does not
restrict the possible form of the likelihood function (1), but, since we
work with real-valued PLDA scores, Gaussian distribution seems the
most natural choice. Thus, the model can be viewed as a Gaussian
mixture model (GMM) with K(K + 1)/2 = K(K − 1)/2 + K
components.

3.2. Automatic Detection of the Number of Speakers

We assumed above that the number of clusters (speakers) is given.
Since this is usually not the case, we adopt Dirichlet processes [17]
which enables building a nonparametric alternative to the finite mix-
ture model, with unbounded (theoretically infinite) number of mix-
ture components. Infinite mixtures are commonly used in Bayesian
clustering [18] due to their appealing ability to automatically de-
termine the number of clusters and their parameters from the data.
Here, we view speaker diarization as a clustering problem. The non-
parametric construction of Dirichlet processes allows us to get a pos-
terior distribution on the number of speakers in a recording, therefore
eliminating the need to specify it in advance.

A Dirichlet process, denoted by DP(α,G0), is a distribution
of distributions, characterized by a base measure G0 and a positive
scalar α known as concentration parameter. In this study, we use
a so-called stick-breaking construction of DP [19], based on rep-
resentation of G as an infinite mixture of atoms drawn indepen-
dently from G0. Formally, G =

∑∞
i=1 πiδθi where θi ∼ G0 and

π = (π1, π2, . . . ) is an infinite vector of mixing weights summing
up to 1. It is constructed as follows:

πk(v) = vk

k−1∏
i=1

(1− vi), vi ∼ Beta(1, α) (2)

Since exact Bayesian inference with an infinite number of pa-
rameters is intractable, a common approach to get the approximate
posterior is via truncated stick-breaking representation [20], in
which πk(v) is set to zero for k > K for some K. The truncation
level K is not part of the prior model specification and can be freely
set. Based on the truncated stick-breaking representation of DP,
[21] introduced a mean-field inference to approximate the posterior
of latent variables using a factorized variational distribution. Here,
we adopt their variational Bayesian (VB) approach, due to its better
scalability compared to sampling based [22] inference in terms of
computation time.

3.3. Model Specification and Parameter Inference

To simplify inference, we choose conjugate exponential priors for
the model parameters. We place a Normal-Gamma prior over the
means and the precisions of the similarity score distributions. Fur-
ther, in order to take into account the effect α on the number of active
mixture components, we impose a Gamma hyperprior over the con-
centration parameter. The complete generative process for the model
is as follows:

α ∼ Gamma(s1, s2)

π|α ∼ Stick(α)

Z|π ∼ Multinomial(π)

λlm ∼ Gamma(a0, b0)

µlm|λlm ∼ Normal(m0, (β0λlm)−1)

dij |Z, µ, λ ∼ Normal(µzizj , λ
−1
zizj ),

where l,m = 1, 2, . . . ,∞, Z = {zi}Ni=1 are the speaker labels,
{µlm, λlm} = θlm are the parameters for normal distribution that
generate observations dij and α is the concentration parameter.
Thus, {s1, s2, a0, b0,m0, β0} are the hyperparameters for the pro-
posed model. Despite the large number of them, most of them do
not require careful fine-tuning. Stick(α) denotes the stick-breaking
process (Eq. 2). The graphical model representation of described
generative process is shown on Fig. 1 (a).

An important part of the model are the hyperparameters m0

which are the prior mean values of the target and impostor score
distributions. They allow the model to distinguish between these
two types of scores. Thus, we have two different mean hyperpa-
rameters: one for the within-class distributions (mtar

0 ) and one for
the between-class distributions (mimp

0 ). As the target PLDA scores
are generally larger than the impostor scores, mtar

0 must be greater
than mimp

0 . Additionally, hyperparameter β0 controls how much the
estimated means can deviate from their prior values m0.

We can now outline the variational Bayesian updates for the pro-
posed model. Due to the conjugate exponential prior for all the pa-
rameters, the variational posterior is expected to be of the same form
as the prior [21]. The probability of assigning the i-th segment to the
k-th speaker is updated as follows:

γki ∝ exp

 N∑
j 6=i

K∑
m=1

γmj 〈logN (dij |µkm, λ−1
km)〉+ 〈log πk〉


,where 〈〉 denotes expectations with respect to factorized posterior
distribution.

Posterior updates for the means and precisions are slightly dif-
ferent from the standard updates for Bayesian Gaussian mixture [23]
in how the sufficient statistics for Normal-Gamma posterior are com-
puted. For the (l,m)-th mixture component, the zero- (N ), the first-
(F ) and the second-order (S) statistics are calculated as,

Nlm =

N∑
i=1

N∑
j<i

rlmij

Flm =
1

Nlm

N∑
i=1

N∑
j<i

rlmij dij

Slm =
1

Nlm

N∑
i=1

N∑
j<i

rlmij (dij − Flm)2,

where rlmij = γliγ
m
j + γmi γ

l
j for l 6= m and rlmij = γliγ

m
j for l = m.

Other variational updates have the standard form and can be found
in [21].

Since mean-field inference is sensitive to initialization, we used
evidence lower bound as a score for model selection, as explained in
the next Section.

4. EXPERIMENTS

In our experiments we compare the proposed model to eigenvoice
based diarization system [3]. Unfortunately, the only data available
to us were the telephone recordings from the NIST SRE 2008. Thus,
we tested our method only on the dialogue conversations.

4.1. Front-end Processing

The front-end computes 14 Mel-frequency cepstral coefficients plus
log-energy to yield a 15 dimensional vector per frame. For compara-
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bility with prior work [3], we use only base cepstral cofficients with-
out any delta or double-delta features. We use gender-independent
UBM of 1024 Gaussians with diagonal covariance matrices trained
on telephone part of the NISTs 1998-2006 SRE corpora.

The total variability matrix of rank 100 was then trained using
this UBM from the same files. Using less (50) or more (200) dimen-
sions, we observed degradation of performance similar to [6]. To
extract i-vectors segments of the signal defined by speech activity
boundaries was divided into portions, having a length not exceeding
100 feature vectors (one second).

When building the similarity matrix we use s-normalized [24]
PLDA scores obtained using a subset of 600 additional utterances
(also of one-second length). This normalization both makes the
score distributions closer to Gaussian and compensates for small
shifts of their values.

We implemented an eigenvoice (further termed as EV) diariza-
tion system according to the first implementation described in [3].
Hence, we evaluate the proposed EV algorithm just after the first
pass without further Viterbi re-segmentation. This enables us to
compare the core functionality of the proposed clustering model
without mixing in the effects of re-segmentation procedure. The
eigenvoice matrix of rank 100 was trained on telephone recordings
from the NIST 1998-2006 SRE corpora.

4.2. Evaluation protocol

We evaluate the performance of our diarization system on the
summed-channel telephone data from the NIST 2008 SRE cor-
pus consist-ing of 2215 conversations. We use diarization error
rate (DER), developed by NIST, as the performance measure [25].
To examine only speaker confusion error, which is the one that
demonstrate the performance of speaker clustering, we used ref-
erence speech activity boundaries, so that errors caused by speech
detectors mismatch were reduced to zero. We estimate DER using
md-eval-v21.pl Perl script from the NIST website [25]. Fol-
lowing traditional conventions, a forgiveness collar of 0.25 sec was
set around the speaker change points.

4.3. Implementation Details

We set the number of VB iterations to 20. Since the determinis-
tic mean-field inference tends to converge to a local optimum and
overestimate the number of speakers, we use to the variational lower
bound as a score for selecting the resulting segmentation. Specifi-
cally, we repeat our algorithm for different upper bound values for
the number of speakers, S ∈ [Smin = 1, Smax = 5], and choose the
segmentation with the largest lower bound. The diarization process
for the baseline EV system is performed the same way.

As noted above, the hyperparameters of the Normal-Gamma
prior have a considerable influence on the performance. We exam-
ine two implementation variants. In the first variant (Proposed I),
the values of β0 should not be too large to allow the means of tar-
get and impostor distributions to be chosen from a broad prior, so
that their values could slightly differ from the apriori fixed mtar

0 and
mimp

0 values. In the second variant (Proposed II), the hyperparam-
eters mtar

0 , mimp
0 are pretrained on a development set consisting

of 500 utterances from the 2006 NIST SRE corpus. Furthermore,
β0 should be large enough to prevent the deviations of mean values
mtar

0 , mimp
0 .

It should be noted, that we do not perform any external iterations
as [7, 8] which generally benefit in diarization performance helping
to avoid premature convergence to a local optimum.

5. RESULTS

Table 2 shows the diarization results for both the baseline EV and the
proposed systems. The first row of demonstarates that EV system
achieves the best DER=1.29%, if the number of speakers is known a
priori (Smax was set to actual numer of speakers). But if this is not
the case (the second row), DER grows to 23%, an order of magnitude
degradation. In contrast, our model yields a good practical result in
both cases, demonstrating viability of Bayesian model selection. Ta-
ble 1 below shows the results of determining the number of speakers.
Note that all the recordings are dialogue conversations between two
parties, thus 2 is the correct answer. Our approach found the correct
number in almost 92 % of the cases.

Table 1. Results for determining the number of speakers. The per-
centage indicates in how many cases (files) the proposed method
deemed the corresponding number of speakers.

2 3 4
91.8 % 7.3 % 0.9 %

The last two rows of the Table 2 reveal that hyperparameter
learning results in improvement of performance for the proposed
system. In case of pre-trained hyperparameters (Proposed II) our
model yields DER=1.74%, which is quite close to the best result of
EV system.

Table 2. Mean and standard deviation σ of diarization error rates
(DER) for the baseline eigenvoice (EV) and the proposed systems
on the NIST SRE 2008 telephone data. Smax is the upper bound on
number of speakers. (For the proposed system in both cases it was
set to 5).

System mean DER, % σ DER, %
EV (Smax = 2) 1.29 4.8
EV (Smax = 5) 23.41 11.2

Proposed I 2.35 6.6
Proposed II 1.74 5.3

6. CONCLUSION

We have developed a new generative model for clustering speech
data represented by matrices of pairwise similarities. The proposed
approach uses rich prior information encoded in speaker verifica-
tion scores which is benefical in diarization as well. We tackled the
problem of unknown number of speakers via Bayesian approach to
model selection and parameter estimation. Our experiments demon-
strate that, in most cases, the correct number of speakers is detected.

The present study has presented preliminary experimental eval-
uation on the NIST 2008 SRE corpus consisting of 2-speaker record-
ings. The evaluation should be extended to datasets containing more
than than two speakers, for instance RT07 meeting data [26].

There are several directions for future work. As suggested in
[8], one might incorporate temporal information to account for the
dependencies across neighboring segments. Another one would be
reducing the number of hyperparameters in the model, especially the
expected means that now require careful initialization. This could be
done by achieving the invariance with respect to any constant shift of
scores caused by adding some real number to the similarity matrix.
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