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ABSTRACT

We consider estimation of a deterministic unknown parameter vec-
tor in a linear model with non-Gaussian noise. In the Gaussian case,
dimensionality reduction via a linear matched filter provides a sim-
ple low dimensional sufficient statistic which can be easily commu-
nicated and/or stored for future inference. Such a statistic is usu-
ally unknown in the general non-Gaussian case. Instead, we pro-
pose a hybrid matched filter coupled with a randomized compressed
sensing procedure, which together create a low dimensional statistic.
We also derive a complementary algorithm for robust reconstruction
given this statistic. Our recovery method is based on the fast itera-
tive shrinkage and thresholding algorithm which is used for outlier
rejection given the compressed data. We demonstrate the advantages
of the proposed framework using synthetic simulations.

Index Terms— Matched filter, robust regression, compressed
sensing, JMAP-ML.

1. INTRODUCTION

One of the most fundamental concepts in parameter estimation is
sufficient statistics. These are functions of the observations that
summarize all the information associated with the parameter of in-
terest [6]. Sufficient statistics minimize the required storage and
communication resources. They are task independent and are useful
when the data has to be compressed for a future specific use. Their
computation usually involves simple and low complexity operations
that are suitable for high rate processing. A sufficient statistic for
estimation of a deterministic unknown parameter vector in a linear
model with Gaussian noise is the well known matched filter. This
simple linear operation is a core ingredient of most radar and com-
munication systems.

Many of the modern physical systems are better modeled as
linear systems with non-Gaussian noise rather then Gaussian, this
mainly due to impulsive noise phenomenons [3–5, 10–12, 15, 19].
Typical noise characteristics include generalized Gaussian distri-
butions, mixture distributions, impulsive models, and heavy tailed
models. In such scenarios, a low dimensional sufficient statistic
is usually unknown, hence the classical matched filter is gener-
ally sub-optimal and more complicated non-linear operations are
required [14].

A common estimation technique in systems with non-Gaussian
noise is to use non-linear element-wise limiters (also known as clip-
pers) prior to the linear filter [12]. However, this method is effi-
cient only when the dynamic range of the data is small compared to
the outliers. Another traditional solution in statistics is to resort to
robust regression methods which works directly with the observed
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Fig. 1. Block diagram of the CMF and CH.

data, e.g., Huber’s technique [10, 11]. This requires all the data to
be stored for processing which can be quite expensive in terms of
memory. In systems where the data have to be communicated for
postprocessing the above is extremely limiting. Instead, the goal of
this paper is to propose a compressed matched filter (CMF), namely
a bank of approximate (and randomized) matched filters which com-
press the observations and contain most of the information in the
data. Then, the output of the CMF can be easily stored or commu-
nicated for future use. In addition, we derive a compressed Huber
(CH) estimator which allows to reconstruct the unknown parameter
vector using this compressed data. A block diagram of CMF and
CH is provided in Fig. 1. It is important to note that recovering
the system parameters from the compressed data may still have the
same complexity as in the uncompressed case. Therefore our main
contribution is in lowering the amount of data transmitted from the
receiver to the postprocessing unit.

Our framework is motivated by the theories of sparse recov-
ery and compressed sensing (CS) [1, 8]. Compressed sensing is a
technique for reconstructing a high dimensional but sparse unknown
vector from a small number of linear measurements. The basic ap-
proach is to use linear measurements with randomized coefficients
and a recovery algorithm based on convex optimization with an L1

norm. Sparse impulsive noise (or outliers) can be dealt with using
the same framework [13, 17]. A more advanced method known as
LASSO extends the setting to noisy measurements [18]. Recently,
the problem was generalized to the estimation of a vector which is
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only partially sparse [16]. All of these methods consider sparse sig-
nals and simple Gaussian noise. Interestingly, Fuchs (in [7]) showed
that Huber’s robust regression can be expressed as the solution to a
partially sparse model. The result is quite intuitive and can be in-
terpreted as Gaussian noise contaminated by additional sparse and
deterministic outliers. Fuchs had also suggested a generalization of
the robust regression to the correlated noise case but did not present
farther results. Our proposed systems is based on these ideas. CMF
complements the classical matched filter with a few additional CS
filters. CH estimates both the signal and the outliers by searching
for a partially sparse solution that is consistent with the compressed
data. Note that our frameworks is different than classical CS in two
aspects: First, our sensing procedure is still mostly based on the
matched filter. The additional randomized filter assist in detecting
and eliminating the outliers. Second, unlike CS, our desired signal
is dense. The sparsity is associated with the nuisance outliers.

The paper is organized as follows. We begin in Section 2 by in-
troducing the problem formulation. In Section 3 we consider the
inherent performance limitations due to the compression. These
bounds are computed assuming a clairvoyant estimator that can only
be approximated in practice. In Section 4, we address the choice
of CMF using the theory of CS matrix design. In Section 5, we
derive the CH algorithm which allows to reconstruct the unknown
signal and as byproduct also part of the noise. This optimization is
based on the joint Maximum a Posteriori and Maximum Likelihood
(JMAP-ML) estimator [20] and ideas from Huber’s regression [10].
The input to CH is low dimensional, but it processes high dimen-
sional vectors in its internal computations. Thus, we also provide an
efficient implementation of CH based on the fast iterative shrinkage
and thresholding algorithm (FISTA) by [2]. Finally, in Section 6 we
illustrate the performance of our proposed methods using numerical
simulations.

The following notation is used. The sets Rn and Rn×m denote
the set of length n vectors and the set of size n ×m matrices. The
operator ‖·‖p denotes the Lp norm. The superscript XT and X−1

denotes the transpose and inverse operations. The subscript xi de-
note the i’s element in the vector x. The Moore Penrose pseudoin-
verse of a matrix T is denoted by T†. We denote the multivariate
Gaussian distribution by N (µ, Σ) where µ and Σ are the mean
vector and the covariance matrix.

2. PROBLEM FORMULATION

Consider a linear model

y = Hθ + n (1)

where H ∈ RN×K is a known matrix with N � K, θ ∈ RK is an
unknown deterministic vector and n ∈ RN is a random vector with
independent elements. In the Gaussian case i.e.

ni ∼ N
(
0, σ2

1

)
i = 1, · · · , N (2)

It is well known that all the information in y about θ can be com-
pressed by a linear matched filter

z = Ty (3)

where T = HT . i.e. z is a sufficient statistic of y. Remarkably,
the dimension of z is K which is much smaller than N , and hence
the compression. This is even true in the extreme continuous case
in which N is infinite but the dimension of z is still K and depends
only on the number of unknowns. Using z we can infer whatever we
need about θ without storing y.

Our goal is to obtain a similar linear compression in the non-
Gaussian case. Specifically, we assume that the marginal distribution
of each element in n is an ε-contaminated Gaussian model

ni ∼ (1− ε)N
(
0, σ2

1

)
+ εG i = 1, · · · , N (4)

where ε > 0 is a known small contamination ratio parameter, and G
is some symmetric distribution, typically unknown and referred to as
outlier distribution. In this case, a low dimensional sufficient statis-
tic is usually unknown. Thus, we seek an approximate compression
procedure. We will design a compression matrix T as in (3) of size
M × N where K ≤ M � N , that summarizes as much informa-
tion on θ as possible. Then, given the compressed z we will derive a
computationally efficient algorithm for estimating the unknown pa-
rameter θ.

3. PERFORMANCE BOUNDS

It is instructive to begin with two simplified problems which provide
inherent performance bounds and explains our methodology. For
this purpose, we assume a Gaussian mixture noise distribution mean-
ing that the outliers are distributed normally, i.e. G = N

(
0, σ2

2

)
where σ2

2

(
� σ2

1

)
is a known constant, and consider oracle estima-

tors which somehow know the locations of the outliers in n. First,
we consider the uncompressed case in which T = I. Under this
assumption, the conditional distribution of the observations is

z ∼ N (Hθ,D) (5)

where D is a diagonal matrix with the variances of n. Roughly,
(1− ε)N of its diagonal elements are equal to σ2

1 and the other εN
elements are equal to σ2

2 . This is a simple Gaussian linear model and
the optimal estimator is a Weighted Least Squares (WLS) [12]

θ̂no compression = argmin
θ
‖y −Hθ‖2D−1 (6)

=
(
HTD−1H

)−1

HTD−1z (7)

where we use a weighted norm defined as

‖x‖2W = xTWx. (8)

Its mean squared error is then given by

MSEno compression = E
{(

HTD−1H
)−1

}
(9)

where the expectation is with respect to the randomness in D. This
is not a general performance bound, as we have assumed a specific
noise distribution but it is quite close if σ2

2 is indeed the variance of
the outliers. Any compression will probably increase the error, and
our goal is to get as close as possible to this error with the smallest
possible value of M .

In the compressed case (again, with known locations of the out-
liers and Gaussian outliers), the distribution of the observations is

z ∼ N
(
THθ,TDTT

)
(10)

where we condition on both T and D which are statistically inde-
pendent. This too is a simple Gaussian linear model solved via a
WLS

θ̂oracle =

(
HTTT

(
TDTT

)−1

TH

)−1

HTTT
(
TDTT

)−1

z (11)
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Its mean squared error is given by

MSEoracle = E

{(
HTTT

(
TDTT

)−1

TH

)−1
}

(12)

where the expectation is with respect to the randomness in both H
and D. In practice, it is impossible to implement the above oracle.
However, it suggests a natural two step approach: first, detect the
location of the outliers, then use an approximate oracle assuming
these locations are exact. Furthermore, these MSEs are reasonable
performance bounds that any practical estimator should be compared
to.

4. COMPRESSED MATCHED FILTER FOR
NON-GAUSSIAN NOISE

The first part of our design is the choice of the sensing matrix T
which defines CMF. Unfortunately, it is not completely clear what
is the optimal criterion for the design and/or how to numerically op-
timize it. On the one hand, from the signal perspective, we would
like T to be close to the matched filter. At the least we need to en-
sure that its columns span the columns of H. On the other hand,
we need T to give some response to the noise shape. Here we can
use some insights from the compressed sensing field by looking at a
sparse model which is close to ours. Specifically, we can look at a
linear system with Gaussian noise and deterministic outliers. Hence,
setting n = ν + u where ν is a random vector with independent
N
(
0, σ2

1

)
variables, and u is a deterministic sparse vector into (1)

results in the following model

y = Hθ + ν + u (13)

CS theory hints that we can use a random matrix to encode the spar-
sity of u. Therefore, to address both criteria we propose the follow-
ing simple structure:

T =

[
HT

WP

]
(14)

where W ∈ RM−K×N is a matrix with independent and identically
distributed (i.i.d.) N (0, 1) elements and

P = I−H
(
HTH

)−1

HT (15)

is a projection matrix onto the null space of H. This choice guar-
antees that we will always be better or equal to the naive Gaussian
matched filter which is exactly the first K rows. The rest of the rows
randomly span as much as possible from the remaining space.

5. COMPRESSED HUBER

The second part of our framework is the CH algorithm which esti-
mates θ given z for a fixed T. Ideally, we would like to find the
parameter θ that maximizes the likelihood of z. But this vector is a
high dimensional mixture of many non-Gaussian random variables,
and its distribution is hard to analyze. Instead, we propose to esti-
mate both θ and n simultaneously. Statistically speaking, we jointly
seek for θ via a maximum likelihood approach and for n via a max-
imum a posteriori approach (see [20] for more details on JMAP-ML
estimation):

minθ,n

∑N
i=1 φ (ni)

s.t. z = T (Hθ + n)
(16)

where φ (·) is the negative-log-posterior distribution of ni as de-
scribed in (4). Because the distributions of G and as a result the
distribution of n are generally unknown, we can not calculate φ (·)
directly. Hence, we have to use some robust objective function which
will be indifferent to the specific distribution of the outliers. Such
is the Huber’s loss function which was proven to be optimal in the
uncompressed case (in the minimax sense) [11]. Together, our re-
construction algorithm is the solution to

minθ,n

∑N
i=1 ρh (ni)

s.t. z = T (Hθ + n)
(17)

where

ρh(n) =

{
n2 |n| < h
2h|n| − h2 |n| > h

(18)

and h is calculated from

σ

h
ψ

(
h

σ

)
−Q

(
h

σ

)
=

ε

2 (1− ε) (19)

with ψ(x) = 1√
2π
e−

x2

2 and Q(t) = 1√
2π

∫∞
t
e−

x2

2 dx. The above
is a convex minimization that can be efficiently solved using off-the-
shelf optimization packages, e.g., CVX [9].

Remarkably, [7] showed that Huber’s function can be expressed
as:

ρh(n) = min
u

(u− n)2 + 2h|u| (20)

Plugging this expression into (17) yields

minθ,n,u ‖n− u‖2 + 2h‖u‖1
s.t. z = T (Hθ + n)

(21)

Then by solving explicitly for n we can derive the following equiv-
alent problem

min
θ,u
‖z−T [Hθ + u]‖2

(TTT )−1 + 2h‖u‖1 (22)

This formulation provides an interesting observation. The solution
of (22) can be interpreted as an estimator to the deterministic sparse
outlier model in (13). It can be seen that the first term in (22) is a
standard WLS objective whereas the second term penalizes vectors
u which are not sparse.

The above formulation is also useful from a numerical perspec-
tive. Note that z is compressed and low dimensional, but the internal
variable u is of length N and therefore the optimization requires a
large scale numerical algorithm. For this purpose, we utilize the well
known FISTA solver due to [2]. First, we notice that θ̂ can be solved
explicitly

θ̂ = Q (z−Tu) (23)

where Q =
(
HTT†TH

)−1
HTT†. Then by substituting it to (22)

we get a classical LASSO problem

min
u
‖(I−THQ) (z−Tu)]‖2

(TTT )−1 + 2h‖u‖1 (24)

which can be solved efficiently by FISTA. For convenience of nota-
tion, we also define the shrinkage and thresholding operator

Tα(x) = max{|x| − α, 0}sign {x} (25)
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Algorithm 1: FISTA implementation of CH
Input: T, H, z

Output: θ̂,û
S = (I−HQ)T

(
TTT

)−1
(I−HQ)

L = 2λmax

(
TTST

)
Step 0: Take t1 = 1 and

u1 = ũ = 0
Step k: (k ≥ 0) Compute

ek = z−Tũk
uk = T 2h

L

(
ũk − 2

L
TTSek

)
tk+1 =

1+
√

1+4t2
k

2

ũk+1 = uk +
tk−1
tk+1

(uk − uk−1)

Return: û = uk and θ̂ = Q (z−Tuk)

Summing the above, a pseudocode for solving CH in (22) using
FISTA is provided in Algorithm 1.

After computing CH, we propose to fine tune the estimate. By
examining the optimal u we (approximately) detect the locations of
the outliers

Îout = {i| |ûi| > σ1} (26)

Then we estimate their variance

σ̂2
2 =

1∣∣∣Îout∣∣∣
∑

û2
i

i∈Îout

(27)

recover the diagonal covariance matrix of n denoted by D̂ and fi-
nally compute θ̂oracle in (11) replacing the true D with its estimate
D̂. We denote this second phase as AWLS for approximate WLS.

6. NUMERICAL RESULTS

To demonstrate the advantages of CMF and CH we present simula-
tion results in a simple signal processing application. We consider
the estimation of amplitudes and phases of K/2 sinusoids with
known frequencies contaminated by a Gaussian mixture noise.
Specifically, we define K = 10, N = 500, ε = 1% and σ2

1 = 1.
We express the sinusoids in linear form by defining H = [ Hc Hs ]
where Hc

i,n = cos (2πfi (n− 1)), Hs
i,n = sin (2πfi (n− 1)),

i = 1, · · · ,K/2 and n = 1, · · · , N . The frequencies are f1 = .1,
f2 = .2, f3 = .3, f4 = .35, and f5 = .4. The true amplitudes
are all unit and Gi = N

(
0, σ2

2

)
with σ2

2 = 500. The data is com-
pressed using CMF and the system parameters are estimated using
the suggested algorithms.

Fig. 2 presents the estimation mean squared errors averaged over
the realizations of the noise n as a function of compression ratio
M/N . For comparison, the errors are bounded below by comput-
ing (9) (NO COMPRESSION) and above by computing (12) with
T = HT (FULL COMPRESSION). In between is the ORACLE
using the proposed CMF with randomized versions of T. Our pro-
posed estimators are denoted by CH and AWLS. It is easy to see
the advantages of CH which closes 90% the performance gap with
only a quarter of the complete measurements (i.e. four fold com-
pression). AWLS is even better and achieves the same performance
with a higher compression. On the downside, the simulation sug-
gest that there may still be room for improvement. Neither CH nor
AWLS succeed in achieving the ORACLE performance that knows
the locations of the outliers.
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Fig. 3 presents the estimation (using CH) mean squared errors
averaged over the realizations of the noise n as a function of N for
several compression ratios. As can be seen the estimation error is
monotonic and asymptotically tends to zero inversely proportional
to N

(
MSE ∝ N−1

)
. Thus, suggesting asymptotic consistency of

the estimator. It is also worth noting that asymptotically the ratio
between estimation MSE’s for different compression is constant.

Results similar to Fig. 2 and Fig. 3 were obtained for Laplace
distributed outliers with the same variance (i.e. Gi = Laplace

(
0, σ2√

2

)
)

and are not shown here due to space constraints.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a simple compression scheme for a
linear system without major information loss. We have also devel-
oped a fast recovery scheme for the compressed data. Combination
of the two methods were shown, by simulations, to recover the sys-
tem parameters using approximately four fold compression with no
significant loss in MSE. Additional research is needed to optimize
the compression matrix and finding more efficient recovery algo-
rithms or providing a tighter lower bound for them.
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