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ABSTRACT

In this paper, a coordinate descent algorithm for robust sparse signal

representation in redundant dictionaries is proposed. Under the co-

ordinate descent framework, each target coefficient is robustly esti-

mated applying the weighted median to a scaled-and-shifted version

of the input signal weighted by the magnitude of an atom associ-

ated to the underlying coefficient. Sparsity is induced by appending,

in the weighted median operation, a zero-valued sample weighted

by an adaptive parameter. This leads to a generalized thresholding

function over each target coefficient minimizing, thus, both the bias

on the nonzero-value estimates and the sensitivity to small levels of

noise. Furthermore, a continuation approach is included in order to

set a suitable value of the regularization parameter that leads to the

best representation at a current noise level. Numerical simulations

are presented, in the context of compressive sensing, to compare the

performance of the proposed algorithm to those yielded by state-of-

the-art methods.

Index Terms— Coordinate descent, sparse signal representation

in overcomplete dictionaries, weighted median

1. INTRODUCTION

A recovery algorithm, in the context of sparse representations in

overcomplete dictionaries, aims at estimating the sparsest coefficient

vector x ∈ R
N that best expands the signal-of-interest z ∈ R

M ,

with z = Ax and M ≤ N , from a set of noisy samples y = Ax+ν.

In this context, A ∈ R
M×N represents an overcomplete (or redun-

dant) dictionary, in other words, a collection of specially designed

or get trained waveforms tailored to the application at hand that best

expands a set of target signals. Furthermore, ν is the noise vector

whose characterization is assumed as additive samples that follow a

common statistical distribution. Finally, an estimate of the desired

noiseless signal can be built —from the recovered sparse coefficient

vector x̂— as a linear combination of a few waveforms in the over-

complete dictionary, i.e. ẑ = Ax̂.

The problem of finding a sparse representation in an redundant

dictionary can be reformulated under the maximum-a-posteriori-

probability (MAP) estimation framework that searches an estimate

of the target coefficient vector x̂ by solving

x̂ = argmax
x

[
log py|x(y|x) + log px(x)

]
, (1)

where log py|x(y|x) is the log-likelihood function that encloses the

relationship between the the noisy observations y and target vector

x, which is, in general, associated to the statistical model that best

describes the additive noise ν embedded in the signal acquisition en-

vironment; and px(x) is the prior probability density function (pdf)

that is derived from the statistical characterization of a previously

known feature in the target coefficient vector x [1].

Most recovery methods obtain an estimate of the desired sparse

vector, x̂, by solving an optimization problem that is tightly attached
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to the specifications of the additive contamination. Thus, if ν follows

a zero-mean Gaussian distribution with variance σ2, py|x(y|x) ∝

exp(− 1
2σ2 ‖y −Ax‖22), leading to the ℓ2-norm of the data fitting

error as a performance criterion to be minimized. Furthermore, since

the goal is to find the sparsest representation of the desired vector, a

sparsity constraint on the elements in x is imposed, reducing the re-

covery task to solve an ℓ0-regularized least square (ℓ0-LS) regression

problem [2]. However, when the underlying noise is better charac-

terized by heavy-tailed distributions, the performance of the ℓ0-LS

approach tends to degrade notably, leading to incorporate incorrect

atoms in the recovered representation [3]. This is due to the fact

that the ℓ2-norm is highly sensitive to outliers or gross errors in the

observed data, raising the need to develop robust sparse signal repre-

sentations in overcomplete dictionaries that recover reliable versions

of the target signal in the presence of impulsive noise.

In this paper, a coordinate descent algorithm for robust sparse

signal representation in overcomplete dictionaries is proposed. This

algorithm estimates the underlying coefficient vector addressing the

recovering issue as an ℓ1-regularized least absolute deviation (ℓ1-

LAD) regression problem, leading to the weighted median (WM) as

the optimal estimator for computing each single coefficient, where

the regularization effect reduces to append, in the WM operation,

a zero-valued sample weighted by an adaptive regularization term.

Furthermore, a continuation strategy is incorporated in order to find

the best regularization parameter at the current level of noise, avoid-

ing, thus, the use of cross-validation methods commonly used in reg-

ularized optimization problems. The paper is organized as follows.

Section 2 describes the ℓ1-LAD regression problem, and a coordi-

nate descent algorithm for robust sparse signal recovery is outlined

in Section 3. Section 4 shows some simulation results and conclud-

ing remarks are summarized in Section 5.

2. THE ℓ1-LAD REGRESSION PROBLEM

A first approach to develop robust sparse signal recovery algorithms

in redundant dictionaries consists in replacing the ℓ2-norm by the ℓ1-

norm in the data fitting term. This approach naturally emerges when

the additive noise is modeled as i.i.d. samples that follow a zero-

mean Laplacian distribution with scale parameter σν . Therefore, the

sparse signal representation reduces to the solution of the following

optimization problem,

x̂ = argmin
x

{‖y −Ax‖1 + λ‖x‖0} , (2)

where ‖·‖0 is the ℓ0-pseudonorm that counts the number of nonzero

elements in the target vector. However, since ℓ0-pseudonorm is a

noncovex function, minimizing (2) becomes in a combinatorial NP-

hard optimization problem [4]. To overcome this drawback, convex

approximations to the ℓ0-pseudonorm can be also considered in or-

der to yield a more tractable mathematical analysis and fast recover-

ing algorithms, much like it is done in the ℓ2-norm based recovery

algorithms [5, 6]. To this end, the sparsity inducing term can be re-

laxed using the ℓ1-norm of the desired coefficient vector x, leading,

thus, to

x̂ = argmin
x

{‖y −Ax‖1 + λ‖x‖1} , (3)
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which is commonly referred to as ℓ1-regularized LAD regression

problem (ℓ1-LAD) [7]. It can be easily shown that, under the MAP

estimation perspective, the regularization parameter λ can be speci-

fied as the ratio of the dispersion parameter of the noise distribution

and the dispersion constant of the prior model, i.e. λ = σν

σx
, and

as will be detailed later, a more realistic prior model, suitable to the

statistics of each transformed coefficient, will be required for deter-

mining an accurate estimation.

Several algorithms have been proposed recently that solve the

ℓ1-LAD regression problem, where LAD-Lasso [8] and ℓ1-ℓ1 match-

ing pursuit [9] are just two optimization strategies for robust recov-

ering. However, the effect of the regularization term on determining

each target coefficient is not clear. To gain some insight into the ef-

fect of the regularization term on each component of the target vec-

tor x, let’s use the coordinate descent framework to minimize (3). To

this end, assume that the k-th coefficient of the target vector, xk, is

iteratively updated keeping fix the remained entries of x(m), where

m is an iteration index. Furthemore, assume for now that the others

entries of the target vector x(m) are somehow known. Therefore, the

N-dimensional ℓ1-LAD optimization problem reduces to the follow-

ing 1-D minimization problem:

x̂
(m+1)
k = argmin

xk

∥
∥
∥y −Ax

(m) + akx
(m)
k − akxk

∥
∥
∥
1

· · · + λ
∥
∥
∥x

(m)
∥
∥
∥
1
, (4)

where ak is the k-th column-vector in A; and the expression

Ax(m) − akx
(m)
k cancels out the contribution of the k-th entry,

obtained at the previous iteration, in the current estimation. The
minimization of Eq. (4) can be rewritten as follows

x̂
(m+1)
k

= argmin
xk

M
∑

i=1

∣

∣ak,i

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

y −Ax(m) + akx
(m)
k

)

i

ak,i

− xk

∣

∣

∣

∣

∣

∣

∣

· · · + λ |xk| . (5)

Upon closer examination of Eq. (5), it can be noticed that the first

term on the right-hand side is a sum of weighted absolute deviations,

where

(

y−Ax(m)+akx
(m)
k

)

i

ak,i
for i = 1, 2, . . . ,M are the samples,

|ak,i| is the weight vector, and xk plays the role of a location pa-

rameter under the maximum likelihood estimation (MLE) approach.

Further simplication can be achieved by noticing that the regular-

ization term λ |xk| can be merged into the summation of weighted

absolute deviations as follows

x̂
(m+1)
k = argmin

xk

M+1∑

i=1

|wi| |Yi − xk| , (6)

where

Yi =







(

y−Ax(m)+akx
(m)
k

)

i

ak,i
for i = 1, 2, . . . ,M

0 i = M + 1
(7)

and

wi =

{
|ak,i| for i = 1, 2, . . . ,M
λ i = M + 1

. (8)

The solution to this minimization problem turns out to be the

WM operator, where Yi|
M+1

i=1
are the data samples; wi|

M+1

i=1
are the

weights, and x̂
(m+1)
k is the weighted median output, in other words,

x̂
(m+1)
k = MEDIAN

(

wi ⋄ Yi|
M+1
i=1

)

(9)
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Fig. 1. (a) LUT curves with fixed λ (solid), and with adaptive λ (dashed);
(b) NMSE in dB versus τ for three different noise dispersion parameters.

where ⋄ is defined as wi ⋄ Yi =

wi times
︷ ︸︸ ︷

Yi, Yi, . . . , Yi [10]. Note in (8) that

the weights are the entries of the k-th column of the dictionary ex-

panded by a weight that takes the value of the regularization parame-

ter, which is, in turns, associated to a zero-valued sample. Note also

that, the sample data is a shifted-and-scaled version of the observed

noisy signal. Thus, the regularization process reduces to appending

a zero-valued sample weighting by the regularization term λ, in the

WM operation; where a large value for λ implies a large weight-

ing on the zero, favoring the sparsity of the solution, on the other

hand, small values for λ implies less influence of the zero-valued

sample on the estimation of x̂
(m+1)
k , leading to a WM output driven

by the shifted-and-scaled version of measurements weighted by the

k-th column of the dictionary, ak.

3. THE ROBUST REPRESENTATION ALGORITHM

An intuitive recovering procedure can be developed based on the co-

ordinate descent approach for solving the ℓ1-LAD regression prob-

lem. Basically, this procedure iteratively estimates each entry of the

target vector, x̂, applying the WM operation over the augmented

vector defined in (7) using the weights given by (8), taking into ac-

count, in the definition of Yi, the previously estimated signal coef-

ficients. However, this approach has a zero attracting effect on the

estimated nonzero coefficients x̂k, much like the effect of the soft

thresholding operation has in the context of signal denoising. In

order illustrate this behavior, look-up-table (LUT) curves are built

from simulations. A sparse signal in the discrete cosine transform

(DCT) dictionary is generated at each simulation trial, with length

N = 256 and sparsity S = 8; where seven nonzero entries are

drawn from a zero-mean Gaussian distribution with unit variance,

and the remained nonzero coefficient is controlled and adjusted in a

dynamic range. The 8-sparse DCT vector is projected to the discrete-

time domain, and then, target coefficients of the projected noiseless

signal are estimated using the heuristic coordinate descent approach,

and the value of the corresponding 8-th controlled component of the

sparse vector is recorded. For each controlled value, the procedure

described above is performed 1000 trials. The averaged LUT plot

for a fixed regularization parameter, λ = 8, is depicted in the solid

curve of Fig. 1(a). As can be observed, the solution of the ℓ1-LAD

optimization problem, using the coordinate descend approach with

the same fixed regularization parameter for all target coefficients, be-

haves in similar way than a soft-thresholding function, where large

coefficient values are biased whereas small values are set to zero.

Upon a closer examination of Eq. (5), the same fix value of the

regularization parameter responds to the assumption that each target

coefficient xk follows a Laplacian distribution with common disper-

sion parameter σx. However, recent work in the context of DCT

coefficient distribution has reported extensive numerical examples

that show a high variability in the scaling constant for different DCT
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coefficients in a large image database [11], leading to the specifica-

tion of an adjustable dispersion parameter σxk
for each desired co-

efficient xk, and consequently, a particular regularization parameter.

Exploiting this fact and under the MAP principles, the estimation of

the scale parameter σxk
reduces to solve the following optimization

problem,

σ̂xk
= argmin

σxk

{

1

σν

M∑

i=1

|(y −Ax)i| −M log

(
1

2σν

)

· · · +
N∑

j=1

|xj |

σxj

−
N∑

j=1

log

(
1

2σxj

)}

(10)

leading to σ̂xk
= |xk|. Notice that the estimation of σxk

is subject

to the previous knowledge of the target coefficient xk, whose pre-

diction is the main objective of this work. However, in the context

of robust regression methods, robust estimators have been proposed,

such as unpenalized LAD estimator [8], and unpenalizaed Huber es-

timator [12], for estimating the adaptive regularization term λk that

is associated with each target coefficient xk. Since λk depends on

previous estimations of the target coefficient xk, it is coherent to

resort to a nested iterative procedure, where the inner loop updates

both each desired coefficient xk and its corresponding regularization

parameter λk; and the outer loop refines the overall vector estimate.

In other words, the adjustable regularization term for the k-th entry

can be obtained as

λ̂
(m+1)
k =

σν

σ̂xk

=
σν

∣
∣
∣x̂

(m)
k

∣
∣
∣

. (11)

where m is the outer iteration index. Therefore, an estimate of each

coefficient that solves the 1-D optimization problem reduces to apply

the weighted median operator over the same sample vector specified

in Eq. (7) weighted by

wi =

{
|ak,i| for i = 1, 2, . . . ,M

λ̂
(m+1)
k i = M + 1

, (12)

where λ̂
(m+1)
k = τ

∣

∣

∣
x
(m)
k

∣

∣

∣

, and τ ∈ R
+ is a parameter that is closely

related to the common dispersion of the noise distribution. Notice

that, since the overall objective vector has a high degree of sparsity,

a roughly update of the regularization parameter is specified using

λ
(m+1)
k = τ

ε+
∣

∣

∣
x
(m)
k

∣

∣

∣

, where the constant ε ≤ 1 ∈ R
+ is included to

avoid division by zero.

Including an adaptive regularization parameter in the estimation

of each desired coefficient has a similar effect than a generalized

thresholding function, where each distinct regularization term has

different influence depending on the target coefficient estimate at the

previous iteration x
(m)
k . For instance, a large values of λk —related

to a small absolute values of x
(m)
k — favors a zero-valued output in

the estimation since the zero-valued sample is largely influence by

the corresponding weight λk; on the other hand, a small value of λk

—associated with a large value of |x(m)
k |— reduces the zero attract-

ing effect approaching the estimation to the unpenalized LAD. In

order to show this behavior, LUT curves are built using an adaptive

regularization term λk, in similar conditions than those used for fix

λ, with the additional outer iteration parameter itmax = 4. The av-

eraged LUT plot for an adaptive regularization parameter λk is dis-

played in the dashed curve of Fig. 1(a). As can be seen in this curve,

the estimation using an adjustable λk behaves in similar way than a

Input : y, A, τ (0) , itmax, tolerance, β

x̂(0) ←− 0N ;
m = 0;

error =
‖y−Ax̂(0)‖22

‖y‖2
2

;

while m < itmax and error > tolerance do
τ (m) = τ (0)βm;
for k = 1 to N do

λ
(m)
k

= τ(m)

ε+

∣

∣

∣

∣

x̂
(m)
k

∣

∣

∣

∣

;

Yi =







(y−Ax̂+akx̂
(m)
k

)i
ak,i

for i = 1, 2, . . . ,M

0 i = M + 1
;

wi =

{

|ak,i| for i = 1, 2, . . . ,M

λ
(m)
k

i = M + 1
;

x̂
(m+1)
k

= MEDIAN
(

wi ⋄ Yi|
M+1
i=1

)

;

end

error =
‖y−Ax̂(m+1)‖22

‖y‖2
2

;

m = m + 1;

end
output : x̂ = [x̂1, x̂2, . . . , x̂N ]T

Algorithm 1: Coordinate descent approach with an adaptive λ and
continuation strategy.

generalized thresholding function, where large coefficients have less

bias than the solution obtained using a fixed regularization param-

eter, approaching the estimated coefficient to the unpenalized LAD

solution. However, this thresholding behavior is less sensitive than

the hard-thresholding operation, where small variations of noisy co-

efficients does not yield a significant changes in the estimation [13].

An additional parameter to be considered, for recovering the op-

timal version of target coefficients, is the common constant τ . As

mentioned above, τ is closely related to the scale parameter σν of

the Laplacian distribution of the additive noise in the sensing model,

and therefore, an appropriate selection of this constant is subject to

the noise levels that corrupts the underlying signal, that, in general,

is unknown. In order to observe the influence of τ on the accuracy of

the recovered entries, the ensemble average of the normalized mean

square error (NMSE), in dB, of the recovered coefficients versus τ is

built from simulations. More precisely, an 8-sparse signal of length

512 is generated, where the nonzero coefficients are drawn from a

zero-mean Gaussian distribution with unit variance, and this sparse

representation is then projected using a redundant DCT dictionary of

size 256×512. At each realization, the projected signal is corrupted

with additive noise, whose samples follow a zero-mean Laplacian

distribution with a specific value of the dispersion parameter σν . The

nested iterative procedure —with a specific value of the regulariza-

tion constant τ and the iteration parameter fixed to itmax = 10—

is implemented for recovering an estimate of the target coefficients

from noisy measurements. After that, the mean square error of the

recovered coefficient vector normalized by the original vector en-

ergy is obtained as a performance measure. For each simulation

trial, at a specific value of τ , a new noise vector is added to the

projected noiseless signal; and for each fixed value of τ , 1000 simu-

lation trials are performed. Figure 1(b) shows the NMSE, in dB, as

τ changes for three different scale parameters (σν1 = 1.0 × 10−1,

σν2 = 5.0 × 10−2, σν3 = 2.5 × 10−2). Note that each curve, at a

specific noise level, reaches the smallest value of the NMSE at a dif-

ferent value of τ . This confirms the functional relationship between

the noise variance and τ . Thus, to obtain an accurate estimate of the

target vector, the noise variance should be estimated and a suitable

value for τ must be selected, alternatively, as described next, we use

a continuation approach to define τ .

In order to adapt the recovering algorithm to the noise levels,
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Fig. 2. NMSE, in dB, of the recovered coefficient vector versus SNR of measurements corrupted with additive noise using: (a) Gaussian distribution, (b)
e-contaminated normal with ǫ = 3%; (c) R-SNR of the target signal versus the impulsive level of e-contaminated additive noise.

we treat τ as a tuning parameter whose value decrease as the itera-

tive algorithm progresses. More precisely, the algorithm starts with

a relative large value of τ (0) favoring the sparsity in the solution, and

identifying only the most significant nonzero coefficients in the first

iteration, but possibly with large bias. Subsequently, as the iterative

algorithm progresses, τ (m) is slowly reduced, new smaller entries

are identified, and the values of the previous identified nonzero co-

efficients are refined. The algorithm continues until a total number

of iterations is reached or until an error value is achieved. A pseudo-

code of this procedure is shown in Algorithm 1. Note that, for a new

value of τ (m) we are solving a new optimization problem taking into

account the solution at the previous iteration, with τ (m−1), as initial

starting point for the new outer iteration loop.

4. SIMULATION RESULTS

We test the proposed method as a signal reconstruction algorithm in

the compressive sensing framework. For all simulation sets, each tar-

get noiseless signal has sparse coefficients in the canonical domain;

the nonzero coefficients are i.i.d. samples that follow a zero-mean

Gaussian distribution with unit variance; and the components of the

measurement matrix A are drawn from zero-mean Gaussian model

with ‖ak‖
2
2 = 1 for k = 1, . . . , N . The setting for executing the

proposed algorithm is ε = 0.01, itmax = 100, and tol = 10−6.

Also, we compare the performance of the proposed approach to

those yielded by two methods that minimize the ℓ2-norm of the data

fitting term [regularized orthogonal matching pursuit (ROMP) [14]

and ℓ1-regularized least square (l1-ls) [6]] and two algorithms that

solve ℓ1-LAD regression problem [LAD-lasso [8], and a previously

proposed algorithm denoted as weighted median hard thresholding

(WMHT) [15]].

First, a 25-sparse signal of length N = 512 is built, and the pro-

jected signal of length M = 256 is corrupted with additive noise that

obeys statistical models with two different distribution tails: Gaus-

sian and e-contaminated normal distributions; where e-contaminated

normal is a mixed noise model that merges Gaussian distribution and

sparse gross errors. More precisely, e-contaminated normal obeys

the following model fη(η) = (1− ǫ)N (0, σ1) + ǫN (0, σ2), where

σ1 is set to the desired signal-to-noise ratio (SNR) whereas σ2 =
100σ1; ǫ is the amount of gross errors; and SNR is related to σ1 by

means of SNR = (Ax)T(Ax)
(Mσ1)

.

Fig. 2(a) depicts the curves of NMSE of the recovered coef-

ficient vector versus SNR of measurements yielded by the various

reconstruction methods for the additive Gaussian noise. Each point

in the curves are obtained by averaging 1000 trials of the respective

experiment. Note that, the proposed algorithm outperforms other

methods in almost all values of SNR, only at small values of SNR

(SNR < 4) LAD-lasso yields better performance than our approach.

Fig. 2(b) displays the curves of NMSE of the recovered coefficient

vector versus SNR of measurements corrupted with e-contaminated

normal distribution, setting the amount of gross errors at a 3%. As

can be observed, the methods that solve the ℓ1-LAD regression prob-

lem outperform those yielded by algorithms that minimize the ℓ2-

norm of the data fitting error, where robust methods achieve a gap

of improvement of about 3 dB. Also, LAD-lasso exhibits less errors

for small values of SNR (SNR < 4), and, as can be noticed in Fig.

2(a) and Fig. 2(b), the proposed algorithm outperforms WMHT for

the entire of the depicted SNR interval. This improvement is due

to our approach induces a generalized thresholding function on each

nonzero estimate, yielding an unbiased coefficient whose output is

less sensitive to small levels of noise than the hard thresholding op-

eration.

Finally, to illustrate the robustness of the proposed method to

outliers, Fig. 2(c) shows reconstruction SNR (R-SNR) obtained for

the projected signal using an increasing set of impulsive noise levels;

where the R-SNR is just the negative of NMSE in dB. A 25-sparse

signal of length N = 1024 is generated, and then, the projected sig-

nal of length M = 256 is corrupted with additive noise that obeys an

e-contaminated normal model, at a specific level of impulsive noise.

For each value of impulsive noise level ǫ, each point in the curves is

obtained by averaging 1000 realizations of the linear model. As can

be observed, the proposed algorithm outperforms the others recov-

ery techniques in presence of impulsive noise, where the recovered

methods based on the minimization of the ℓ2-norm notably degrades

this performance as the impulsive noise increase.

5. CONCLUSIONS

In this paper, a coordinate descent approach for robust sparse signal

representation has been presented. More specifically, this approach

addresses the recovering of the target coefficient vector as a ℓ1-LAD

optimization problem; where each coefficient is robustly estimated

as the WM of a scaled-and-shifted version of noisy observations

weighted by the magnitude of the corresponding atom components.

An adaptive regularization parameter is included in the WM as an

appended weight that influences the zero-valued sample, inducing a

generalized thrseholding operation on the estimation of each target

coefficient. A continuation strategy is also incorporated in order to

adapt the the estimation of the target vector to a current noise level.

In the context of compressive sensing, extensive simulations show

that the proposed algorithm outperforms other approach in the pres-

ence of impulsive noise. Furthermore, our robust approach exhibits a

competitive performance when the underlying additive noise follows

a Gaussian distribution.
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