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ABSTRACT

The performance of existing approaches to the recovery of
frequency-sparse signals from compressed measurements is
limited by the coherence of required sparsity dictionaries and
the discretization of frequency parameter space. In this pa-
per, we adopt a parametric joint recovery-estimation method
based on model selection in spectral compressive sensing.
Numerical experiments show that our approach outperform-
s most state-of-the-art spectral CS recovery approaches in fi-
delity, tolerance to noise and computation efficiency.

Index Terms— Compressive sensing, frequency-sparse
signal, model selection, parametric estimation, maximum
likelihood estimator

1. INTRODUCTION

One of the recent research interests of compressive sensing
(CS) has focused on the recovery of signals that are spectral-
ly sparse from a reduced number of measurements [1–6]. A
great many applications, including spectrum sensing [7] and
wideband communication [3, 8], feature smooth or modulat-
ed signals that can be modelled as a superposition of a small
number of sinusoids. Recovery of such frequency-sparse sig-
nals brings about a novel issue in the formulation of CS re-
covery problem: signal representations in frequency domain
have a continuous parameter space, while recent CS research-
es [9–11] are rooted on signal decomposition in a discretized
dictionary.

An intuitive solution to this problem is a denser sampling
of the parameter space, which improves the compressibility
of signal representations. But increasing the resolution of
parameter sampling worsens the coherence between dictio-
nary elements, which results in loss of sparsity and unique-
ness of signal representations. Such ambiguity prevents cer-
tain algorithms [9, 10] from achieving the sparse representa-
tion successfully. Initial contributions to spectral CS recovery
are concentrated on the recovery algorithm, the optimization
problem formulation and the sparsity prior to combat the in-
tricacy in signal representations [5, 12–16].

Estimation of the frequencies, amplitudes and phase shift-
s of sinusoids embedded in noise is a fundamental problem
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in time series analysis and other more general statistical sig-
nal processing problems. Classical treatments of this prob-
lem are restricted to the Fourier frequencies. This implicit
discretization barrier is overcome due to the introduction of
the minimum description length (MDL) principle for model
selection [17–19]. In this paper, we improve over existing
approaches by applying model selection to spectral CS. We
take into consideration parametric joint recovery-estimation
methods, which determine parameters by minimizing a log-
likelihood function of compressed measurements.

The novelty of our approach is that it performs estima-
tion from compressed measurements rather than from signal
samples. Since the log-likelihood minimization is in practice
equivalent to an `2-norm minimization, the estimation perfor-
mance is guaranteed as long as the sensing matrix satisfies re-
stricted isometry property (RIP), and thus distance-preserving
[10]. It can be shown that random marices from Gaussian,
Rademacher, or more generally a sub-Gaussian distribution
have the RIP with high probability under certain condition-
s [20]. We solve the optimization problem through an it-
erative greedy approach to outperform state-of-the-art spec-
tral CS approaches. Experimental results show improved re-
construction fidelity against existing approaches, from both
noiseless and noisy measurements. In addition, our approach
is essentially greedy, and is thus more computationally effi-
cient than optimization based approaches. Furthermore, com-
pared to traditional model selection estimators [17–19], our
approach reduces the number of samples needed and conse-
quently the computational load of estimation.

2. PROBLEM FORMULATION AND RELATED
PRIOR WORK

The problem of recovering frequency-sparse signals from
compressed measurements is formulated as follows: Let s (t)
denote an unidimensional real-valued frequency-sparse signal
composed of K sinusoids with unknown frequencies ωj , am-
plitudes aj , and phase shifts φj , and x (t) be s (t) corrupted
by additive noise ξ (t) with unknown noise level.

x (t) = s (t) + ξ (t) =

K∑
j=1

aj sin (ωjt+ φj) + ξ (t) . (1)
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Let s = {st}Nt=1 and x = {xt}Nt=1 be the observed sam-
ples of s (t) and x (t) at discrete times {tj = j}Nj=1, and
m = Φx ∈ RM be the compressed measurements of x,
where Φ ∈ RM×N is the sensing matrix.

Given the compressed measurements m, the problem is
to recover the K sinusoids in (1). Many different approaches
have been suggested in the literature for spectral CS recovery.
Under certain conditions for matrix Φ, one can recover signal
s through an `1-norm optimization problem [9, 10], denoted
as `1-synthesis,

ŝ = Fη̂, η̂ = arg min
η∈RN

‖η‖1 s.t. ‖m−ΦFη‖2 ≤ ε, (2)

where ε is an appropriately chosen bound on the noise level,
F is the orthonormal DFT basis, and η is the DFT coefficients
of signal samples s. The optimal recovery of signal s by opti-
mizing (2) is feasible provided that the decomposition of s in
the DFT basis F is K-sparse, i.e. ‖η‖0 = K [9, 10]. Unfor-
tunately, not only the DFT coefficients of frequency-sparse
signals are not sparse, but even worse, they are just barely
compressible. One way to remedy this problem would be to
employ a redundant DFT frame

Ψ (c) := [e (0) e (∆) · · · e (2π −∆)] ,∆ := 2π/cN,

e (ω) :=
1√
N

[
1 ejωej2ω · · · ejω(N−1)

]T
, (3)

as a substitute for F. But the redundant DFT frame violates
the incoherence requirement for the dictionary [5].

It has recently been shown that the incoherence condition
of dictionary D is not necessary concerning the recovery
of signal x, provided that the frame coefficients DHx are
sufficiently sparse [12], where (·)H designates the Hermitian
operation. Under this circumstance, `1-analysis yields good
recovery result for signal x. However, the redundant DFT
frame coefficients of frequency-sparse signals Ψ (c)

H
s do

not have the sparsity property.
An alternative approach is to benefit from structured s-

parsity by using a coherence inhibition signal model [5]. The
resulting Structured Iterative Hard Thresholding (SIHT) algo-
rithm is able to recover frequency-sparse signals by selecting
elements with low coherence in an redundant DFT frame.
Other algorithms with similar flavor to SIHT include Band-
excluded Orthogonal Matching Pursuit (BOMP), which takes
advantage of band-exclusion [15]. However, the reconstruc-
tion fidelity of SIHT and BOMP is substantially limited due
to the simplicity in the formulation of algorithms.

One way to remedy the discretization of parameter space
is the polar interpolation approach, and the corresponding
algorithm is named Continuous Basis Pursuit (CBP) [16].
Like other optimization based algorithms, CBP suffers from
its high computational complexity. A novel algorithm, Band-
excluded Interpolating Subspace Pursuit (BISP), combining
the merits of band-exclusion and polar interpolation, has
been proposed more recently [14, 21]. By incorporating po-
lar interpolation with greedy algorihtm, BISP improves the

convergence rate of CBP while only inducing an amenable
reduction in performance.

Recent advances in convex geometry has proved that
frequency-sparse signals can be recovered from random sub-
samples via atomic norm minimization [13], which can be
implemented as a semidefinite program (SDP) [22]. Though
atomic norm has several appealing properties, SDP is in prac-
tice computationally expensive. Moreover, the formulation
of SDP is limited to random subsampling matrix, and no
discussion for arbitrary measurement settings is provided.

3. MODEL SELECTION FOR SPECTRAL
COMPRESSIVE SENSING

In this paper, we adopt a parametric joint recovery-estimation
method, which estimates the unknown frequencies, ampli-
tudes, and phase shifts. Under the assumption of white Gaus-
sian noise, with the number of sinusoids K a priori known, a
common method to estimate the 3K parameters is by maxi-
mizing the likelihood function L of observed data x [17]

L (θK ,x) =

N∏
t=1

e−|xt−
∑K

j=1 aj sin(ωjt+φj)|2 , (4)

where θK = {aj , ωj , φj}Kj=1 contains the 3K parameters of
the K sinusoids. In spectral CS recovery problem, the signal
samples x is not available, and as a substitute the compressed
measurements m is observed. Thus the estimation method is
reformulated as the minimization of the log-likelihood func-
tion ofm

θ̂K = arg min
θK

− lnL (θK ,m) , (5)

which is equivalent to an `2-norm minimization problem

θ̂K = arg min
θK

∥∥∥∥∥∥m−
K∑
j=1

Φsj

∥∥∥∥∥∥
2

2

, (6)

where sj = {aj sin (ωjt+ φj)}Nt=1 is the sample vector ofK
sinusoids with estimated 3K parameters. Obviously, (6) can
be reformulated as the following `2-norm minimization prob-
lem

ϑ̂K = arg min
ϑK

∥∥∥∥∥∥m−
K∑
j=1

Φ
(
a1,jsinωj

+ a2,jcosωj

)∥∥∥∥∥∥
2

2

,

(7)
where ϑK = {ωj , a1,j , a2,j}Kj=1 contains the reformulated
3K parameters with a1,j = aj cosφj , a2,j = aj sinφj des-
ignating the amplitudes of sine and cosine sinusoids, and
sinωj = {sinnωj}Nn=1, cosωj = {cosnωj}Nn=1 are the sam-
ples of sinusoids with frequency ωj .

In recent parametric estimation works, the best K match-
ing sinusoids are iteratively recovered [17]. In this paper,
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we reformulate previous methods as a spectral CS recovery
method as shown in Algorithm 1, which deviates from previ-
ous approaches in that the input is compressed measurements
rather than signal samples. In each iteration, the estimat-
ed compressed measurements of other K − 1 sinusoids are
trimmed from input compressed measurements m, and then
the parameters of the best matching sinusoid to the residual
measurements r are estimated through functionR (Φ, r).

The function {ω̂, â, φ̂} = R (Φ, r), as shown in Algo-
rithm 2, estimates the parameters θ̂ = {ω̂, â, φ̂} of the best
matching sinusoid from residual CS measurement vector r.
The algorithm solves the parametric estimation by minimiz-
ing the following log-likelihood function

θ̂ = arg min
θ
− lnL (θ, r) , (8)

which is equivalent to an `2-norm minimization problem

ϑ̂ = arg min
ϑ
‖r −Φ (a1sinω + a2cosω)‖22 , (9)

whereϑ = {ω, a1, a2} contains the reformulated sinusoid pa-
rameters. (9) can be rewritten in matrix form

ϑ̂ = arg min
ϑ
‖r −Aωa‖22 , (10)

where Aω = [Φsinω,Φcosω] is composed of the com-
pressed measurements of sinusoid samples at frequency ω,
and a = [a1, a2]

T contains the amplitudes of sine and cosine
sinusoids, respectively. Given frequency ω a priori known,
(10) is converted to the estimation of amplitudes a by solving
an `2-norm minimization problem

â = arg min
a∈R2

‖r −Aωa‖22 , (11)

to which the solution is given in a simple form â = A†ωr,
where A†ω = (AH

ωAω)−1AH
ω denotes the pseudoinverse of

matrix Aω . Applying (11) on (10) yields the following two-
step optimization problem, which estimates frequency ω and
amplitudes a consecutively.

ω̂ = arg min
ω∈[0,π]

∥∥∥r −AωA
†
ωr
∥∥∥2
2
, â = A†ω̂r. (12)

In Algorithm 2, the estimation of frequency ω and am-
plitudes a are carried out in an iterative form to gradually
converge to the numerical solution to (9). In each iteration,
the minimum `2-norm error is calculated for each frequency
point sampled from predetermined frequency range with e-
qual interval, and then, the frequency range is shrunk to the
neighborhood of the frequency point with least `2-norm error,
through which the estimation precision is improved.

4. NUMERICAL EXPERIMENTS

We compared the reconstruction performance of our algo-
rithm, denoted as MDS, to state-of-the-art methods including

Algorithm 1: Model Selection for Spectral Compres-
sive Sensing

Input: CS matrix Φ ∈ RM×N , CS measurement vector
m ∈ RM , sparsity K
Output: Reconstructed frequency-sparse signal ŝ
Initialize: ŝ(j) = 0, j = 1, · · · ,K
while halting criterion false do

for i = 1 to K do
{form residual measurement}
r ←m−

∑K
j=1

j 6=i
Φŝ(j)

{estimate sinusoid parameters}{
ω̂i, âi, φ̂i

}
← R (Φ, r)

{form sinusoid estimate}

ŝ(i) ←
{
âi sin

(
ω̂it+ φ̂i

)}N
t=1

end for
end while
return ŝ←

∑K
j=1 ŝ

(j)

Algorithm 2: Sinusoid Parametric EstimationR (Φ, r)

Input: CS matrix Φ ∈ RM×N , residual CS
measurement vector r ∈ RM
Output: Sinusoid parameter estimates ω̂, â, φ̂
Initialize: α = 0, β = π, S =∞
while halting criterion false do
{frequency estimate}
{ωi}Ni=0 ← {α+ i (β − α) /N}Ni=0

for i = 0 to N do
{calculate compressed measurement}
Aωi

← [Φsinωi
,Φcosωi

]
{calculate square error}
Sωi ←

∥∥∥r −AωiA
†
ωi
r
∥∥∥2
2

if Sωi < S then
S ← Sωi , j ← i
{update parameter estimate}
â = [â1, â2]

T ← A†ωi
r, ω̂ ← ωi

end if
end for
{frequency range refinement}
α← max {ωj−1, α} , β ← min {ωj+1, β}

end while

return ω̂, â←
(
â21 + â22

) 1
2 , φ̂← arctan (â2/â1)

`1-analysis, `1-synthesis, SIHT, BISP, BOMP, SDP and CBP,
from both noisy and noise-free measurements1. We chose
the normalized `2-norm error as major performance measure,

1The authors would like to thank Marco F. Duarte, Karsten Fyhn, Boaz
Nadler and Gongguo Tang (listed in alphabetical order) for providing the
implementation of their algorithms.
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Fig. 1: Signal reconstruction performance in noiseless case.

which is defined as ‖x− x̂‖2 / ‖x‖2, between the original
signal x and the recovered signal x̂. To evaluate and compare
to other algorithms the frequency estimation performance
of MDS, we generated frequency-sparse signals of length
N = 128 composed of K = 3 real-valued sinusoids with
frequencies selected uniformly at random, unit amplitudes,
and zero phase shifts. The frequencies were well-separated
so that no two tones were closer than π/N to keep compat-
ible with algorithms based on coherence inhibition signal
model, including SIHT, BOMP, and BISP. Such separation
is reasonable due to recent theoretical advances in relation
between signal recoverability and minimum separation be-
tween spectral spikes [13, 23]. Additionally, we generated
frequency-sparse signals with frequencies as in the former
setting but amplitudes and phase shifts selected uniformly at
random to evaluate the parametric estimation performance
of MDS. The two parameter settings are denoted in our ex-
periment as MDS-FREQ and MDS-SINU, respectively. We
performed Monte Carlo experiments and averaged over 600
trials. The sensing matrix Φ was chosen as the Gaussian ran-
dom matrix2, and the redundant DFT frame was with c = 5.

In the first experiment, we evaluated the reconstruction
performance from noiseless measurements with M varying
from 15 to 65. We set ε = 10−10 for relevant algorithms. The
results of numerical experiment are shown in Figure 1. In the
noiseless case, SDP obtains the best result. When the number
of measurements is sufficiently large, the frequency estima-
tion performance of MDS outperforms CBP, whereas for M
smaller than 40 it is worse than CBP and `1-synthesis, while
still better than other algorithms. The parametric estimation
performance of MDS is similar to the frequency estimation.
Among other algorithms, CBP outperforms `1-synthesis and
remains static precision level for a wide range of M. Though
the redundant DFT coefficients recovered by `1-synthesis is
actually not sparse and exhibits severe frequency mismatch
phenomenon, the signal is in practice reconstructed accurate-
ly. The performance of `1-analysis, BOMP, and SIHT is the

2For the SDP algorithm we used a random subsampling matrix, as the
algorithm is only defined for such a sensing matrix.
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Fig. 2: Signal reconstruction performance in noisy case.

Methods Noiseless Noisy
`1-analysis 232.5267 329.2279
`1-synthesis 9.6257 12.8537
SIHT 1.0950 1.1129
SDP 39.2334 59.1094
BOMP 0.0398 0.0396
CBP 133.7628 115.8614
BISP 17.7901 15.7219
MDS-FREQ 0.9900 0.9499
MDS-SINU 1.1507 1.0233

Table 1: Average computation times in seconds.

worst among the algorithms tested.
In the second experiment, we included additive Gaussian

noise in the signal model. We fixed M = 64 and explored a
wide range of signal-to-noise ratio (SNR) value from 0 to 60
dB. The resulting performance curves are shown in Fig. 2.
In the noisy case, the frequency estimation performance of
our algorithm outperforms other algorithms, and when ran-
dom amplitudes and phase shifts are involved, only negligible
deteriorations are induced. This is because model selection
relies less on signal sparsity, and more on the matching to
superposition of sinusoids. Among other algorithms, CBP
and SDP obtain the best result, and `1-synthesis exhibits high
fidelity when SNR level is sufficiently high. Despite its sat-
isfactory performance in low SNR level, the performance of
BISP is mediocre when noise level is low.

The computation time is of equal importance, and the
average computation times are listed in Table 13. The table
shows that the excellent performance of frequency estimation
and parameter estimation of MDS is enhanced by its high
computational efficiency. Moreover, it is observed that the
distinguished performance of CBP and SDP are restrained
by their high computational expense. In addition, MDS only
requires the sensing matrix to have the RIP. This flexibility
on measurement scheme increases its performance advantage
over SDP.

3We set M = 64 for the noiseless case and SNR = 30 for the noisy case.
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