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ABSTRACT

Compressed sensing is the ability to retrieve a sparse vector from a
set of linear measurements. The task gets more difficult when the
sensing process is not perfectly known. We address such a problem
in the case where the sensors have been permuted, i.e., the order
of the measurements is unknown. We propose a branch-and-bound
algorithm that converges to the solution. The experimental study
shows that our approach always retrieves the unknown permutation,
while a simple convex relaxation strategy almost always fails. In
terms of its time complexity, we show that the proposed algorithm
converges quickly with respect to the combinatorial nature of the
problem.

Index Terms— Inverse problem; sparsity; compressed sensing;
dictionary learning; permutation; optimization; branch and bound.

1. INTRODUCTION

Many studies have addressed the linear sparse estimation problem
where an observed data y ∈ RM is modeled as y = Dx where D ∈

RM×K ,M ≤K is the known dictionary or measurement matrix and
the unknown representation x ∈ RK of the data in D is assumed to
be sparse. Sparsity means that the number of non-zero elements in
x, denoted by ∥x∥0, is small compared to M . A good estimation [1]
of x from y and D is obtained by solving, for p = 1,

argmin
x

∥x∥p s.t. y =Dx, (1)

which is a convex relaxation of the NP-hard problem when p = 0.
In many scenarios, the dictionary D is unknown. It can be

learned from a collection of N examples given as the columns of
a matrix Y ∈ RM×N , each of them being sparse in the unknown dic-
tionary. This task is known as dictionary learning [2, 3, 4] and its
principle can be formulated, for p = 0 or p = 1, as the problem

argmin
D,X

∥X∥p s.t. Y =DX. (2)

Dictionary learning is a difficult nonconvex problem. Adding prior
knowledge is an option to make it simpler – yet still interesting in
order to partially learn a dictionary from examples [5, 6, 7, 8]. This
strategy may even lead to a convex problem, such as the estimation
of gains in the measurement matrix [8].

In this paper, we address a new problem, in the same philosophy,
by considering the case where the order of the sensors has been lost
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during the sensing process: the dictionary is known up to a permu-
tation of its rows. Such a scenario may be of interest in applications
like bit-rate reduction in a channel that does not preserve data order.
It may also happen in an experimental setup with a large number of
sensors – e.g., a microphone array –, due to some handcrafting mis-
takes in the wiring between sensors and A/D converters. We call this
problem the sensor permutation problem1.

Formally, an unknown permutation matrix P is such that PY =

DX. The related estimation problem addressed in this paper is

argmin
P,X

∥X∥1 s.t. {
P ∈ PM

PY =DX
(3)

where PM is the set ofM ×M permutation matrices. Problem (3) is
combinatorial since PM is discrete with size M !. Our contributions
to overcome this complexity and solve the problem are:

• we study a convex relaxation of (3) by replacing PM by its
convex hull and show that in practice, this strategy almost
always fails to identify the true permutation (Section 2);

• we propose a branch-and-bound algorithm that converges to
the solution of (3) by exploring PM cleverly (Section 3);

• we show experimentally that in many configurations, the pro-
posed algorithm converges quickly, after exploring a small
subset of PM ; we finally check that in the experiments, the
solution of (3) is indeed the original permutation (Section 4).

2. RELAXED CONVEX PROBLEM

The only reason why problem (3) is not convex is that PM is not a
convex set. A natural three-step strategy to obtain a tractable solu-
tion is: replace PM by its convex hull; solve the resulting convex
problem; project the estimate back to PM . The convex hull of PM

is the set BM of M ×M bistochastic matrices, i.e., matrices with
non-negative coefficients summing to one along each row and each
column. The convex problem of interest is thus

ÌB, ÌX ≜ argmin
B∈BM ,X

∥X∥1 s.t. BY =DX

= argmin
B,X

∥X∥1 s.t.

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

B ∈ RM×M
+

B1M = 1M

BT1M = 1M

BY =DX

(4)

where 1M is an M -length vector filled with ones.

1Note that this problem is not a particular case of dictionary selection as
defined in [6, 7], even if the search space is composed of a finite number of
dictionaries.
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Since PM ⊂ BM , the estimate ÌB is generally not a per-
mutation matrix : it can be post-processed by the Hungarian
algorithm [9] in order to obtain the closest permutation matrix
P̃ ≜ argmaxP∈PM

⟨P, ÌB⟩ where ⟨A,B⟩ ≜ ∑i,j A (i, j)B (i, j).
By fixing P̃, the sparse representation is finally refined as

X̃ ≜ argmin
X

∥X∥1 s.t. P̃Y =DX. (5)

This strategy is summarized in Algorithm 1 where any convex
optimization method is suitable to solve (4) and (5).

Algorithm 1 Simple convex relaxation strategy
Require: Y, D.

1: Estimate the bistochastic matrix ÌB by solving (4).
2: Find the closest permutation P̃ by applying the Hungarian algo-

rithm to ÌB.
3: Estimate the sparse matrix X̃ by solving (5).
4: return P̃, X̃.

In practice, this strategy gives poor results : it almost never iden-
tifies the solution of problem (3). As an illustration, the average
number of errors in the estimated permutation has been measured in
a basic experimental setting, using uniformly-random permutations
on M measures, a Gaussian M × 2M dictionnary D and N = 40
examples with K0 = 3 non-zero Gaussian components randomly lo-
cated. An error is defined as a wrong sensor index out of the M
possible positions in the permutation and the number of errors is av-
eraged among 20 trials. As reported in Table 1 for 6 ≤M ≤ 20, most
of the permutations are far from being retrieved since the number of
errors almost equals the number of elements in the permutations.

M 6 8 10 12 14 16 18 20
#errors 4.3 5.7 8.9 10.6 11.9 14.6 16.6 18.7

Table 1. Average number of errors in the permutation estimated by
the simple relaxation strategy (Algorithm 1) as a function of M .

3. A BRANCH-AND-BOUND ALGORITHM

3.1. Branch-and-bound principle

Branch and bound [10, 11] is a clever way to explore a non-convex
set and solve an optimization problem over this set. If the optimum is
unique, it converges to the solution, with no theoretical speed guar-
antee – i.e., the entire set is explored in the worst case. However, in
many practical instances, a very significant speedup is obtained.

Let us consider the optimization problem over a discrete set So

P (S
o
) ∶ argmin

x∈So
f (x) . (6)

We denote its solution by x∗So and the optimal value by f∗So =

f (x∗So). For any subset S ⊂ S
o, we consider subproblem P (S)

and we assume that one can efficiently compute a lower bound
lP (S) and an upper bound uP (S) on the optimal value ofP (S):

lP (S) ≤ f∗S ≤ uP (S) . (7)

By splitting the entire set So
= ⋃

N
n=1 Sn into subsets S1, . . . ,SN

and defining their lowest upper bound U ≜minn uP (Sn), we have

∀n, U < lP (Sn)⇒ x∗So ∉ Sn. (8)

Algorithm 2 Generic branch-and-bound procedure
Require: A problemP over a set So.

1: Initialize list of active subsets A← {S
o
}

2: repeat
3: Choose an active subset S ∈ A and remove it from A.
4: Split S = ⋃N

n=1 Sn into S1, . . . ,SN .
5: Add new active subsets S1, . . . ,SN in A.
6: Compute lower bounds lP (S1) , . . . , lP (SN) and upper

bounds uP (S1) , . . . , uP (SN).
7: Update L (resp. U ) as the lowest lower bound (resp. lowest

upper bound) among all the elements of A.
8: Prune every subset S ∈ A such that lP (S) > U .
9: until L = U , i.e., A is reduced a singleton

10: return the solution x remaining in A = {{x}}.

Hence, the knowledge of lower and upper bounds can help to discard
some subsets without exploring them exhaustively. A branch-and-
bound strategy uses these ingredients to create subsets (branching)
and bound their optimal values in a iterative way until all the space
but one element – the solution – has been pruned. The procedure is
summarized in Algorithm 2. Starting from the full set So, a list of
active subsets is iteratively built. At each iteration, an active subset
may be split into new active subsets, and some active subsets may be
pruned using (8), avoiding an exhaustive evaluation of the problem.
In practice, designing such a procedure relies on the ability to:

• compute a lower bound lP (S), for instance by relaxing S to
a convex set S ′ and by solvingP (S

′
);

• compute an upper bound uP (S), for instance by projecting
the solution of the relaxed problem back onto S to obtain a
suboptimal feasible solution;

• exhibit a heuristic to choose which active subset to split
(line 3 in Algorithm 2): a common heuristic is to select the
active subset with lowest lower bound.

• exhibit a heuristic to split the selected subset (line 4 in Algo-
rithm 2), usually resulting into subsets with balanced sizes.

3.2. Proposed algorithm

We propose a strategy to explore the set of permutationsPM by con-
straining some elements to equal one in the permutation matrices.
An active subset of PM is fully characterized by such a constraint
set. Fig. 1 illustrates the tree structure underlying the exploration of
P3. Each active subset of PM is split by choosing a row in which
there is no constrained element and by creating a subset with such a
constraint for each possible position in this row. The proposed pro-
cedure is given in Algorithm 3 and its key steps are detailed below.
Problems over subsets. An active subset of PM is fully character-
ized by a set of positions C ⊂ {1, . . . ,M}

2 to constrain the related
elements of P to equal one. Thus, the restriction of problem (3) to
any subset of PM characterized by a constraint set C is defined as

PY,D (C) ∶ argmin
P,X

∥X∥1 s.t.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

P ∈ PM

P (i, j) = 1,∀ (i, j) ∈ C

PY =DX

(9)

Note that the first two constraints in (9) are equivalent to fixing the
lines and columns of P that contain one constraint from C and find-
ing an unconstrained permutation matrix in PM−∣C∣.
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Fig. 1. Tree structure to explore P3 by adding constraints (white
ones) on the permutation matrix. Some elements are consequently
zeros (black), others are free (gray).

Algorithm 3 Proposed branch-and-bound algorithm
Require: Y, D.

1: Initialize list for active constraint sets A← {{∅}}

2: repeat
3: Select C ∈ A with lowest lower bound, remove it from A.
4: Choose splitting point (i0, j0) as the location of the greatest

element in the bistochastic matrix obtained from lY,D (C).
5: Add C ∪ {(i0, j)} to A for each j such that

PY,D (C ∪ {(i0, j)}) is feasible.
6: Compute the lower bound lY,D (C ∪ {(i0, j)}) and the upper

bound uY,D (C ∪ {(i0, j)}) of each added constraint set.
7: Update L (resp. U ) as the lowest lower bound (resp. lowest

upper bound) among all the elements of A.
8: Prune every S ∈ A such that lP (S) > U .
9: until L = U

10: return permutation matrix P̂ and sparse matrix X̂ related to the
only element induced by the unique constraint set in A = {C}.

Lower and upper bounds. By relaxing PM to its convex hull, we
define the following tractable lower bound on the solution over any
subset constrained by C:

lY,D (C) ∶min
B,X

∥X∥1 s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B ∈ RM×M
+

B1M = 1M

BT1M = 1M

B (i, j) = 1,∀ (i, j) ∈ C

BY =DX

(10)

The upper bound uY,D (C) is computed from the optimal bistochas-
tic matrix obtained in (10) as follows : the closest permutation matrix
is computed by the Hungarian algorithm applied in PM−∣C∣ after re-
moving all contrained lines and columns; the resulting permutation
matrix P̃ ∈ PM is used to solve (5); the upper bound is defined as
the l1 norm ∥X̃∥

1
of the solution. It may happen that if C is a set of

contraints obtained from a parent set C′, uY,D (C) may be greater
than uY,D (C

′
) while the solution for uY,D (C

′
) does not violate

constraints C. In this case, uY,D (C) is set to uY,D (C
′
).

Branching : choosing a new constraint. In order to build active
subsets, a natural heuristic consists in choosing the maximum uncon-
strained element indexed by (i0, j0) ∉ C in the bistochastic matrix
estimated in (10). Indeed, it is likely that contraining this element
to equal one will be a step toward the optimal solution, and that al-
ternative subsets in which this element equals zero will be pruned
early. Based on this heuristic, we explore constrained sets where the

constraint is moved along line i02 of the permutation matrix (line 5
in Algorithm 3). One must ensure that the problem is feasible on the
new set C ∪ {(i0, j)} by checking that (i′, j) , (i0, j′) ∉ C,∀i′, j′,
i.e., the element (i0, j) in the permutation matrix is not induced to
equal zero by an existing constraint in C.

4. EXPERIMENTS

The experiments rely on synthetic data generated randomly as fol-
lows : the M ×K dictionary is composed of standard Gaussian i.i.d.
entries; matrix X is composed by N K0-sparse columns, with stan-
dard Gaussian i.i.d. non-zero entries; a permutation matrix is drawn
uniformly from PM ; the noiseless observation matrix is computed
as Y = PTDX. Dimensions M,K,K0,N are detailed for each
experiment.

The code is written in Matlab and uses the CVX toolbox [12]
to solve the relaxed problems (10), an existing implementation of
the Hungarian algorithm [13], and the L1 magic toolbox [14] to
solve (5). The code has been run on a 2.9GHz core. All the code
and data are provided with this paper for reproducible research pur-
poses3.

4.1. Typical behavior

In order to illustrate how the algorithm behaves along iterations, a
representative example is shown in Fig. 2 with M = 10, K = 20,
K0 = 3 and N = 100. The algorithm converges to the true solu-
tion in 265 iterations, after exploring 1671 subproblems, i.e., about
0.05% of the sizeM ! = 10! ≈ 3.6 ⋅106 ofPM . The list of active con-
straint sets grows in the first 10 iterations, the active sets C having 1
to 3 constraints. The lowest upper bound U in blue shows that the
best candidate encountered is refined along the iterations and that the
first one is not optimal. In the next 100 iterations, the exploration of
the active constraint sets results in pruning most of the active sets ob-
tained after splitting, their lower bound being greater than the lowest
upper boundU . As a result, the list tends to shrink and the number of
constraints does not exceed 4. At the very end, moving from 4 to 10
constraints, i.e., to the solution, is performed in very few iterations.

This example shows the benefits of the proposed approach: start-
ing from the non-optimal permutation given by Algorithm 1, it ex-
plores the low-depth nodes of the tree (i.e., active sets with few con-
straints, see Fig. 2 bottom) which happens to be sufficient to discard
most of the search space without exploring it and to converge to the
true solution.

4.2. Global trends

Extensive experiments are conducted in order to depict the perfor-
mance of the proposed algorithm, in terms of time complexity – i.e.,
the number of subproblems explored before converging, averaged
among several trials – and of recovery of the original permutation.
Time complexity vs. sparsity and redundancy. Time complexity
has been measured when fixing M = 8, N = 60 and changing the
sparsityK0 and the redundancyM/K. Average results over 10 trials
are shown in Fig. 3. Convergence is typically achieved in less than
100 iterations for very sparse signals and slightly-redundant dictio-
naries – the set of permutations having 8! ≈ 40320 elements. Time
complexity increases moderately with K0, more strongly with K.
Time complexity vs. permutation size. The increase of the time
complexity with the permutation size M is a key question since the

2Moving the constraint along column j0 is likely to give similar results.
3http://www.lif.univ-mrs.fr/ vemiya/icassp2014/
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Fig. 2. Typical behavior of the proposed algorithm along the itera-
tions. Top: lowest lower bound L, lowest upper bound U and area
representing the range of all active lower bounds inA. Middle: num-
ber of active and pruned constraint sets in A. Bottom: histogram of
the number of constraints among elements in A.

size of PM grows as M ! ∼
√
2πM (M

e
)
M

and since the branch-
and-bound procedure does not provide any theoretical convergence
rate. Results are reported in Fig. 4 for M ∈ [6,14], K = 20, K0 = 3
and N = 60. The time complexity increases from 90 to 17000
but the number of explored subproblems gets dramatically low com-
pared to the size of PM (2 ⋅10−5% forM = 14). This result supports
the idea that solving combinatorial problem (3) is not hopeless.
Time complexity vs. number of examples. Time complexity has
been measured when fixing M = 10, K = 20, K0 = 3, and changing
the number of examples N . Median results and quartiles are rep-
resented in Fig. 5. As expected, the convergence needs to explore
less subproblems when more examples are available. However, each
subproblem demands more time, due to the size of the data, so that a
tradeoff may be achieved by adjusting N . The quartiles represented
in Fig. 5 also illustrate the distribution of actual time complexities
which may deviate significantly from average or median results.
Perfect permutation recovery. Finally, one may wonder whether
the estimated permutation equals the original permutation or whether
some error rates must be measured. Actually, the true original per-
mutation is retrieved by our algorithm in all the experiments above.

5. CONCLUSIONS

We have defined the sensor permutation problem in compressed
sensing and proposed a branch-and-bound algorithm to solve it. A
number of experiments have demonstrated that sparsity is a good
regularization to recover an unknown permutation: the proposed
method based on non-convex optimization is tractable and gives per-

Fig. 3. Average number of explored subproblems as a function of
δ = M

K
and ρ = K0

M
, on a logarithmic color scale.
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Fig. 4. Influence of the number of measures M . Left: average num-
ber of evaluated subproblems (plain) and size M ! of the set of per-
mutations (dashed). Right: ratio between both quantities.
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fect recovery results, while convex optimization fails in retrieving
the original permutation.

This work opens a number of new directions. One may gener-
alize the sensor permutation problem to a larger class of objective
functions, including noise in the data fitting term or structured spar-
sity. Other discrete optimization problems in compressed sensing
may be defined and addressed using branch-and-bound strategies:
instead of a permutation matrix, one can consider an unknown di-
agonal matrix with diagonal elements in {−1,1} to model unknown
sensor polarization, or in {0,1} to model unknown defective sen-
sors. Time complexity of such brand-and-bound algorithms may be
improved by investigating other heuristics and by adjusting the num-
ber of examples to find a balance between the time needed to exploit
each subproblem and the time spent on exploring more subproblems.
Early stopping may also be used to control the time complexity at the
price of losing the perfect recovery guarantee.
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