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ABSTRACT

Parameter estimation from compressively sensed signals has re-
cently received some attention. We here also consider this problem
in the context of frequency sparse signals which are encountered in
many application. Existing methods perform the estimation using
finite dictionaries or incorporate various interpolation techniques
to estimate the continuous frequency parameters. In this paper, we
show that solving the problem in a probabilistic framework instead
produces an asymptotically efficient estimator which outperforms
existing methods in terms of estimation accuracy while still having a
low computational complexity. Moreover, the proposed algorithm is
also able to make inference about the sparsity level of the measured
signal. The simulation code is available online.

Index Terms— Compressive sensing, sinusoidal models, model
order comparison, spectral estimation.

1. INTRODUCTION

In recent years, compressive sensing (CS) [1–3] has spurred a re-
newed interest in sparse decompositions of signals. A sparse de-
composition of a noisy signal x ∈ CN can be written as

x = Ψs+ n (1)

where Ψ ∈ CN×D is referred to as the basis or dictionary of the
signal, s is a D-dimensional l-sparse vector containing only l non-
zero coefficients, and n ∈ CN is an error vector modelling noise
and model inaccuracies. Many methods have been proposed for es-
timating the l non-zero coefficients in s from x. However, as the
sparsity level l is typically much smaller thanN , these methods may
suffer from a large computational overhead. In CS, this overhead
is decreased considerably by utilising the sparsity during the data
acquisition. That is, instead of acquiring x by sampling at at least
the Nyquist rate, only an amount of data close to the sparsity level
l is acquired. These data y ∈ CM are often referred to as the mea-
surements and related to x through y = Φx where Φ ∈ CM×N
is the so-called sensing or measurement matrix. Thus, CS may give
faster algorithms, data acquisition at a lower sampling rate, and less
demanding storage requirements. These properties are important in
most signal processing algorithms, and CS has, therefore, become
very popular. As many physical signals such as speech and musi-
cal signals [4–7] can accurately be modelled as a weighted sum of a
small number of sinusoidal basis functions, an incoherent or a redun-
dant discrete Fourier transform (DFT) basis has often been used as
the dictionary Ψ for such frequency sparse signals (see [8,9] and the
references therein). However, since the frequency parameter is con-
tinuous in nature, a sparse decomposition with a finite dictionary is
in direct contradiction with the physics behind the sinusoidal signal

model which is given by

x(n) =

l∑
i=1

αi exp(jωin) + w(n) , n = 0, 1, . . . , N − 1 (2)

where αi ∈ C, ωi ∈ Ωi ⊆ [0, 2π), andw(n) ∈ C are the i’the com-
plex amplitude, the i’th frequency parameter in radians per sample,
and a noise sample, respectively. As demonstrated and discussed
in [8], a sinusoidal signal consisting of only a few sinusoidal basis
function is not sparse in the DFT domain unless all the l frequencies
lie on the DFT grid {2π(d − 1)/D}D−1

d=0 . To tackle this, the redun-
dancy in the DFT can be increased by increasing D, but this leads
to that the number of measurements M must also be increased [10],
thus defeating the whole purpose of using the CS framework. There-
fore, various interpolation methods have recently been proposed and
compared in [8, 9].

Spectral interpolation is an old idea in spectral estimation [11],
and this concept has also been adopted by the CS community [8, 9].
In our opinion, the various interpolation methods are rather heuris-
tic ways of fixing a problem arising from using the signal model
in (1), which is not the best choice for estimating continuous non-
linear parameters such as frequencies. As we demonstrate in this
paper, formulating the problem of estimating the frequency param-
eters from the measurements y in a consistent probabilistic frame-
work has numerous advantages compared to the proposed interpo-
lation methods. These include a low computational complexity, su-
perior estimation performance, uncertainty measures for the param-
eter estimates, and the ability to handle an unknown noise variance
and sparsity level l. Moreover, we also demonstrate that our pro-
posed frequency estimator has optimal estimation performance for
even moderate SNRs as its mean squared error attains the Cramér-
Rao lower bound (CRLB) [12]. In [13], we recently analysed the
related problem of jointly estimating the direction of arrivals (DOA)
and the number of sources from compressively sensed array signals.
The proposed algorithm was based on the MUSIC algorithm and
the notion of angles between subspaces [14]. However, for com-
pressively sensed time-series, the covariance matrix model [7] does
not hold, and the subspace-based methods such as the MUSIC al-
gorithm can therefore not be used to solve the problem considered
in this paper. On the other hand, the algorithm presented here can
straightforwardly be modified to solve the DOA problem as well.

2. SINUSOIDAL MODEL COMPARISON AND
PARAMETER ESTIMATION

In this section, we first include compressed sensing and pre-
whitening into the physical signal model in (2). Based on the
recently proposed framework in [15], we then formulate the prob-
abilistic framework for jointly estimating the frequency parameters

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 1035



and detecting the sparsity level l. The latter is usually referred to as
model selection and comparison. In the context of CS, an unknown
level of sparsity is problematic since the number of measurements
M should ideally be close to this level, which therefore often is
assumed known. In practice, however, the level of sparsity is often
unknown and might not even be possible to upper bound.

2.1. Bayesian Model

2.1.1. Observation Model

Including the sensing matrix and writing the signal model in (2) in
vector form yields

y , Φx = ΦZl(ωl)αl + Φw (3)

where the (n + 1, i)’th element of Zl(ωl) and the i’th element of
αl are given by exp(jωin) and αi, respectively. Due to no prior
information on the noise, entropy maximisation, and mathemati-
cal tractability [16–19], we model w(n) as white Gaussian noise
(WGN) with variance σ2. The noise vector v = Φw is there-
fore coloured Gaussian noise with the covariance matrix ΦΦH . To
simplify the derivation below, we first pre-whiten the signal by pre-
multiplying the measurements y in (3) with the Cholesky factorCH

satisfying (ΦΦH)−1 = CCH . Thus, the signal model is

yf , C
Hy = WZl(ωl)αl + e (4)

where we have defined the weighting matrix as W , CHΦ and
the WGN noise vector as e , CHΦw. The observation model
is therefore a complex-valued normal distribution with probability
density function (pdf)

p(yf|ωl,αl, σ
2, l) = CN (yf;WZl(ωl)αl, σ

2IM ) (5)

where IM is the M ×M identity matrix. We note in passing that
adding the noise after or prior to taking the measurements results
in essentially the same signal model if the measurements and the
sensing matrix are pre-filtered in the latter case. As noted in [20],
however, the signal-to-noise ratio (SNR) is not the same.

2.1.2. The Prior

Model selection in nested models such as (5) cannot solely be
based on comparing candidate models in terms of their likelihood
since more complex models can always be made to fit the data
better than simpler models. Traditionally, this has been resolved
by penalising model complexity in various ways via information
criteria such as the AIC [21], the MDL [22], or the asymptotic
MAP criteria [23]. Here, the model comparison is performed in the
Bayesian framework recently proposed in [15] since it automatically
penalises model complexity through the prior distributions and has
been demonstrated to outperform the traditional information criteria.

For regression models, the Zellner’s g-prior given by [24]

p(αl|ωl, σ2, g, l) =

CN (αl; 0, gσ
2[ZHl (ωl)W

HWZl(ωl)]
−1) (6)

has been widely adopted since it is analytically tractable and easy to
understand and interpret [25, 26]. The hyperparameter g, which can
be interpreted as a scaled SNR [26], is assigned the hyper-g prior

p(g) = (δ − 1)(1 + g)−δ , δ > 1 (7)

where δ should be selected in the interval 1 < δ ≤ 2 [25], and
we usually set it to 3/2. Besides having some desirable analytical
properties, p(g) reduces to the Jeffreys’ prior and the reference prior

when δ = 1 [27]. However, since this prior is improper, it can only
be used when the prior probability of the all-noise model (l = 0) is
zero. When this is the case, the proposed model comparison method
has no user-defined parameters. Since the noise variance σ2 has
the same meaning in all models, it can be given an improper prior
[15, 28]. We, therefore, use the popular Jeffreys’ prior p(σ2) =
(σ2)−1 which is scale invariant. We assume the uniform prior

p(ωl|l) =
1

Wl

l∏
i=1

IΩi(ωi) (8)

for the frequencies where IΩi(ωi) is the indicator function on the
interval Ωi ⊆ [0, 2π), and Wl is the normalisation constant. The
overall frequency parameter space is therefore Ωl = Ω1 × Ω2 ×
· · ·×Ωl. Finally, the prior on the model order is also a uniform prior
of the form p(l) = (L+ 1)−1IL(l) where L = {0, 1, . . . , L}.

2.2. Bayesian Inference

As inference about the frequency parameters turns out to be made as
a bi-product of comparing the various candidate model orders, the
derivation below focuses on the model comparison problem. From
Bayes’ theorem, the posterior distribution on the model order has the
probability mass function (pmf)

p(l|yf) =
BF[l; 0]p(l)∑L
i=0 BF[i; 0]p(i)

(9)

where the all noise model (l = 0) is the base model, all other models
are compared against, and the Bayes’ factor is given by

BF[i; k] =
p(yf|l = i)

p(yf|l = k)
,
mi(yf)

mk(yf)
. (10)

The function ml(yf) is an unnormalised marginal likelihood whose
normalisation constant must be the same for all models. Working
with ml(yf) rather than the normalised marginal likelihood p(yf|l)
is usually simpler. Moreover, p(yf|l) does not even exist if an im-
proper prior such as the Jeffreys’ prior on the noise variance is used.
Given g and ωl, the marginal likelihood is given by

p(yf|ωl, g, l) =

∫ ∞
0

∫
Cl

p(yf|αl,ωl, σ
2, l)

× p(αl|ωl, σ2, g, l)p(σ2)dαldσ
2 . (11)

By performing the integration in (11), it can be shown that

p(yf|ωl, g, l) ∝ ml(yf|ωl, g) =
m0(yf)

(1 + g)l

(
σ̂2

0

σ̂2
l (ωl, g)

)M
(12)

where we have defined

σ̂2
l (ωl, g) ,M−1yHf

(
IM −

g

1 + g
P l(ωl)

)
yf

= σ̂2
0

(
1− g

1 + g
R2
l (ωl)

)
(13)

R2
l (ωl) , y

H
f P l(ωl)yf(y

H
f yf)

−1 (14)

m0(yf) , Γ(M)(Mπσ̂2
0)−M . (15)

The matrix P l(ωl) is the orthogonal projection matrix for the col-
umn space of WZl(ωl), and σ̂2

l (ωl, g) is asymptotically equal to
the maximum likelihood (ML) estimate of the noise variance in the
limit σ̂2

ML(ω̂l) = limg→∞ σ̂
2
l (ω̂l, g) with ω̂l being the ML estimate

of the frequency parameters. The estimate σ̂2
0 is the estimated noise

variance for the all-noise model (l = 0) which has the unnormalised
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marginal likelihood m0(yf). Given ωl and g, the Bayes’ factor is
therefore given by

BF[l; 0|ωl, g] =

[
σ̂2

0/σ̂
2
l (ωl, g)

]M
(1 + g)l

=
(1 + g)M−l

(1 + g[1−R2
l (ωl)])

M
.

(16)
To find the Bayes’ factor in (10), we have to multiply (16) with the
priors on ωl and g and integrate this product over these parameters.
Unfortunately, this cannot be done analytically, and the integral is,
therefore, evaluated using the Laplace approximation. In making
this Laplace approximation, we have to approximate the posterior
distribution over the frequency parameter with one or more normal
distributions. To do this, we have to find the MAP estimate of the
frequencies and their associated uncertainty.

2.2.1. Inference for the Frequency Parameters

Since the MAP estimate of the frequency parameters does not de-
pend on the value of g, it is given by

ω̂MAP
l = arg max

ωl∈Ωl

p(ωl|yf, l) = arg max
ωl∈Ωl

p(yf|ωl, g, l)p(ωl|l)

= arg max
ωl∈Ωl

R2
l (ωl) = arg max

ωl∈Ωl

yHf P l(ωl)yf (17)

where the third equality follows from (8) and (12). The MAP es-
timate of ωl is therefore the same as the ML estimate which we
here compute using a slightly modified version of the weighted RE-
LAX (WRELAX) algorithm [29] originally proposed for time delay
estimation. The WRELAX algorithm iteratively estimates the fre-
quencies in L steps. In the l’th step, the signal is assumed to consist
of l frequency components whose parameters are re-estimated in a
circular fashion until practical convergence. Thus, the intractable
and multi-dimensional optimisation problem in (17) is replaced by a
series of simpler one-dimensional optimisation problems of the form

ω̂i = arg max
ω∈Ωi

|zH(ω)WHri|2

zH(ω)WHWz(ω)
(18)

where the (n + 1)’th element of z(ω) is exp(jωn) and ri = yf −
WZl\i(ω̂l)α̂l\i with l\i denoting without column or element i.
For every i = l, l − 1, . . . , 1, the ML estimate of the complex am-
plitudes are computed, and this is repeated until the relative change
of ‖yf −WZl(ω̂l)α̂l‖22 at i = 1 is below some treshold ε. The
optimisation problem in (18) is non-convex, but can be solved effi-
ciently by first finding a coarse frequency estimate on a DFT grid
and then by refining it using a golden section search. The coarse es-
timate can be computed efficiently by pre-computing the DFT of the
columns ofWH usingM FFTs. From these DFTs, the denominator
in (18) can also be pre-computed leaving only a single matrix-vector
product in the numerator to be recomputed in every iteration of the
WRELAX algorithm.

Given g, the posterior uncertainty about ωl is represented by
the Hessian matrix H(ωl|g) of ln p(ωl|yf, g, l) at the mode ω̂MAP

l .
Finding an analytical expression for H(ωl|g) is a tedious task, and
we refer the interested reader to the derivation in [15]. However,
when the SNR is large enough, the frequencies are well-separated
(relative to N ), and the projection matrix WHW is replaced by its
expectation, a very simple approximation toH(ω̂MAP

l |g) is

H(ω̂MAP
l |g) ≈ − gMN2

6(1 + g)σ̂2
l (ω̂MAP

l , g)
diag(|α̂l|2) . (19)

In our experience, this approximation works very well in prac-
tice. Thus, a normal approximation around the mode ω̂MAP

l is
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Fig. 2. The model detection correctness of the WRELAX algorithm
and asymptotic MAP criterion.

N (ωl; ω̂
MAP
l ,−H−1(ω̂MAP

l |g)). However, since the posterior dis-
tribution p(ωl|yf, g, l) is invariant to permutations of the frequency
parameters, p(ωl|yf, g, l) consists of l! = Γ(l + 1) identical peaks
which all contribute in the Laplace approximation which we con-
sider next.

2.2.2. The Laplace Approximation

Since the marginal posterior pdf over g is not symmetric and in order
to avoid edge effect near g = 0, the re-parametrisation τ = ln g with
the Jacobian dg/dτ = exp(τ) is made [25]. This re-parametrisation
suggests that the posterior distribution over g is approximately a log-
normal distribution. Thus, if we define the integrand

q(ωl, τ) , BF[l; 0|ωl, exp(τ)]p(ωl|l)p(τ) , (20)
the Laplace approximation to the Bayes’ factor in (10) is [15]

BF[l; 0] =

∫
Ωl

∫ ∞
−∞

q(ωl, τ)dτdωl (21)

≈ BF[l; 0|ω̂MAP
l , ĝ]

ĝ(δ − 1)(2π)(l+1)/2

(1 + ĝ)δWl

×
√
γ(ĝ|ω̂MAP

l )
∣∣∣−H(ω̂MAP

l |ĝ)
∣∣∣−1/2

Γ(l + 1) (22)

where we have defined
ĝ = −(βτ +

√
β2
τ − 4ατ )/(2ατ ) (23)

ατ = (1−R2
l (ω̂

MAP
l ))(1− l − δ) (24)

βτ = (M − 1)R2
l (ω̂

MAP
l ) + (2− l − δ) (25)

γ(ĝ|ω̂MAP
l ) =

1

ĝ

[
M(1−R2

l (ω̂
MAP
l ))

[1 + ĝ(1−R2
l (ω̂

MAP
l ))]2

− M − l − δ
(1 + ĝ)2

]−1

.

(26)
Inserting the Bayes’ factor in (22) into (9) allows us to select the
most likely model order and to compute the posterior probabilities
of all model orders.

3. SIMULATIONS

We here compare our proposed joint frequency and model order es-
timator to the Band-Excluded Interpolating Subspace Pursuit (BISP)
algorithm recently proposed in [9] and to the CRLB with and without
CS [30]. The BISP algorithm is based on polar interpolation between
the dictionary elements [31], and it was demonstrated to outperform
other baseline and state-of-the-art interpolation methods in terms of
estimation accuracy. Moreover, the BISP1 algorithm has a lower

1We thank the authors of [9] for making their implementation of the BISP
algorithm publicly available.
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Fig. 1. The RMSE of first (left) and third (right) frequency estimates produced by the WRELAX and the BISP algorithms.

computational complexity than many of the other methods. Contrary
to our proposed algorithm, the BISP algorithm assumes the noise
variance to be known, that αl consists of non-negative and real-
valued amplitudes, and that the number of sinusoids is known. The
simulation code used for generating the results presented here can be
found at http://kom.aau.dk/~jkn/publications/publications.php.

3.1. Estimation Accuracy

To evaluate the estimation accuracy of the proposed frequency esti-
mator, we considered the same parameter setup as in [9]. That is, a
data vector of lengthN = 100 was compressed with a WGN sensing
matrix to M = 50 measurements, and the signal was set to consist
of l = 4 sinusoids. The estimation performance was evaluated using
a Monte Carlo simulation consisting of 500 runs at SNRs from -10
dB to 20 dB in steps of 2 dB. Since the exact CRLB depends on the
sensing matrix and the model parameters, these were fixed to2

ω4 = ∠α4 =
[
0.5 1.5 1.5 + 2π/N 3

]T (27)

|α4| =
[
1 1 1 1

]T
/
√
N (28)

in all runs. As the order of the estimated frequencies is not neces-
sarily the same as the order of the frequencies in ω4, the estimated
frequencies were permuted using the Hungarian algorithm [32] be-
fore the estimation errors were computed.

In Fig. 1, the estimation performance is shown for the first (left
plot) and the third (right plot) frequency parameters. The first fre-
quency parameter was well-separated from the rest whereas the third
parameter was only 2π/N radians/sample larger than the second.
When sinusoidal components are close, they are harder to estimate
and this is also reflected in the increased CRLB. The expected
asymptotic CRLB (EA-CRLB) [30] is derived under the assumption
that the sinusoids are well-separated (relative to N ) and is there-
fore too optimistic for closely spaced sinusoids. In the two plots, we
therefore observe that the CRLB and the EA-CRLB nearly coincided
for the first component, but were distinct for the third component.
We also observe that the CRLB with CS was N/M = 2 times the
CRLB without CS which is consistent with our previous findings
in [13, 30] that a penalty is paid in terms of the estimation accuracy
by employing CS. However, when we are only given the measured
samples in y and the SNR is large enough, we see that the proposed
WRELAX estimator is an asymptotically efficient estimator since

2In [9], the phase is assumed to be zero for a time index running from 1 to
N . To compensate for that the time index here runs from 0 to N−1, the phase
and the frequency are therefore identical. When running the simulations, we
noticed that the performance of the BISP algorithm was sensitive to how the
ground truth amplitudes were selected, and we therefore used the same values
for the amplitudes as in [9].

it attained the CRLB for SNRs above 2 dB. On the other hand, the
estimation accuracy of the BISP algorithm was above the bound for
most SNRs. Since the bound was derived under the assumption that
the phases and the noise variance are unknown, an algorithm assum-
ing the same strong prior knowledge as the BISP estimator should
be able to have an RMSE below the bound. However, this is not the
case and the BISP estimator is therefore suboptimal. Moreover, the
computation time of our implementation of the proposed WRELAX
algorithm is noticeable lower than that of the BISP algorithm.

3.2. Model Detection Performance

To evaluate the model detection performance of the proposed WRE-
LAX algorithm, we conducted another Monte Carlo simulation con-
sisting of 5000 runs for each SNR from -10 dB to 20 dB in steps of
2 dB. As recommended in [33], the model, the model parameters,
and the noise realisation were generated at random in each run. The
model order was generated uniformly from the set {1, . . . , 5}, the
amplitudes were set to ones, and the phases and frequencies were
generated uniformly from the interval [0, 2π). We compared the
performance of the proposed WRELAX algorithm to the asymp-
totic MAP criterion for frequency estimation [23] and in both of
these methods, the range of candidate model orders were the set
L = {0, 1, . . . , 8}. In Fig. 2, the amount of correctly detected
model orders are shown. Clearly, both model selection criteria per-
formed well with the WRELAX algorithm performing better than
the asymptotic MAP criterion for most SNRs. In our experience,
the performance difference between the two methods increases for
shorter data length and decreases for longer data length.

4. CONCLUSION

We have here considered the problem of jointly estimating the fre-
quency parameters and the sparsity level of a frequency sparse sig-
nal from compressively sensed measurements. In contrast to previ-
ously proposed interpolation methods, we have analysed the problem
in a probabilistic framework and based the inference on the physi-
cal signal model. Not only did this enable us to easily cope with
unknown nuisance parameters such as the complex amplitudes and
the noise variance, but it also produced the WRELAX frequency
estimator which outperformed a state-of-the-art interpolation based
method in terms of both estimation accuracy and computation time.
Moreover, inference was also made about the sparsity level or model
order, and we demonstrated that the proposed WRELAX estimator
outperformed the popular asymptotic MAP criterion.
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