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ABSTRACT
The paper considers the problem of reconstructing blocks-
sparse signals. A new algorithm, called synthesized multi-
task compressive sensing (SMCS), is proposed. In contrast
to existing methods that rely on the availability of the spar-
sity structure information, the SMCS algorithm resorts to the
multitask compressive sensing (MCS) technique for signal re-
covery. The SMCS algorithm synthesizes new compressive
sensing (CS) tasks via circular-shifting operations and uti-
lizes the minimum description length (MDL) principle to de-
termine the proper set of the synthesized CS tasks for signal
reconstruction. An outstanding advantage of SMCS is that it
can achieve good signal reconstruction performance without
using prior information on the block-sparsity structure. Sim-
ulations corroborate the theoretical developments.

Index Terms— Block-sparsity, Bayesian learning, syn-
thesized multitask compressive sensing, minimum descrip-
tion length

1. INTRODUCTION

Compressive sensing (CS) is an innovative signal processing
technique that allows recovering a signal from its compressive
measurements, as long as the signal representation is sparse
in certain domains [1]. In this paper, we consider the efficient
reconstruction of block-sparse signals. In addition to spar-
sity, these signals exhibit additional structure in the form of
clustered nonzero coefficients. Block-sparsity arises when we
deal with multi-band signals [2] or the measurements of gene
expression levels [3]. Utilizing the block-sparsity property
has been shown to be able to enable robust signal recovery
from fewer compressive measurements [4].

Block-sparse signal reconstruction was examined exten-
sively in recent literatures. Specifically, [4] proposed the
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block compressive sampling matching pursuit (BCoSaMP)
for block-sparse signal recovery. However, BCoSaMP uti-
lizes a priori information of original signals, namely, the
number of nonzero blocks and the number of nonzero ele-
ments in each block. In [5], the block orthogonal matching
pursuit (BOMP) was proposed. Through the application of
relaxations, Zou et. al. developed the block fixed-point con-
tinuation algorithm in [6] for block-sparse signal recovery,
while Elhamifar and Vidal approached the reconstruction
problem via convex optimization [7]. The proposed methods
from [6] and [7], nevertheless, require that the information
regarding the sizes of different blocks is available. [8] inves-
tigated the dictionary optimization problem for block-sparse
signal representation but the study also assumed the availabil-
ity of the knowledge on the maximum block length. Based
on the framework of Bayesian sparse learning for temporal-
ly correlated signals [9], [10] proposed two algorithms for
block-sparse signals recovery. They were referred to as the
block-sparse Bayesian learning (BSBL) algorithm and its ex-
tended version, the EBSBL algorithm. The BSBL algorithm
deals with the case where the block partition is known while
the EBSBL algorithm works with unknown block partitions.
[10] points out that BSBL as well as EBSBL can have good
performance even when the block partition is unknown, but
they are sensitive to the choice of the block length parameter.

We shall develop in this paper a novel algorithm for recon-
structing block-sparse signals. In contrast to most existing ap-
proaches, the new method eliminates the need for the sparsity
structure information, such as the number of nonzero block-
s required in the BCoSaMP algorithm. The newly proposed
method is based on the multi-task compressive sensing (M-
CS) concept [11]. MCS is an elegant extension of Bayesian
compressive sensing (BCS) [12] and it handles multiple CS
tasks by jointly recovering multiple signals from their com-
pressive measurements. By exploiting the statistical correla-
tion among the original signals, MCS enables robust recon-
struction of signals whose compressive measurements are in-
sufficient when the signal recovery is conducted individually.
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We shall refer to our algorithm as the synthesized multi-
task compressive sensing (SMCS). It addresses the challenge
of reconstructing a single block-sparse signal by transforming
it into an MCS problem. The multiple CS tasks are synthe-
sized by simply circular-shifting the columns of the measure-
ment matrix of the original CS model. This corresponds to
circular-shifting the elements in the original signal vector and
creates signal vectors that have overlapping nonzero cluster-
s, or equivalently, correlated signals, which enables the use
of MCS. The number of synthesized tasks is determined by
the minimum description length (MDL) principle. The newly
proposed SMCS technique outperforms the previously devel-
oped block-sparse signal recovery methods in terms of sig-
nificantly reduced reconstruction errors and the removal of
the needs for detailed information on the sparsity structure.
Computer simulations are provided to demonstrate the good
performance of the proposed SMCS method.

2. MULTITASK COMPRESSIVE SENSING

Assume without the loss of generality that there are L CS
tasks in MCS. They are modeled as vi = Φiθi + εi, where
i = 1, 2, ..., L and vi is the compressive measurement vector
of the ith task and Φi is the Ni × M measurement matrix
(Ni << M ). θi is the M × 1 signal vector in the ith task,
and εi represents the measurement noise that follows an i.i.d.
Gaussian distribution with zero mean and covariance matrix
α−10 Ii.

For conciseness, here we do not illustrate MCS in detail
and interested readers are directed to [11] for more detail-
s. MCS exploits the statistical correlation among the original
signals of multiple CS tasks, evaluates jointly the sharing pa-
rameters α = {αj}j=1,M (the definition of α refers to the
equation (4) in [11]), and then recovers the original signals.
MCS estimates the sharing parameters α by maximizing the
logarithm of resultant marginal likelihood (i.e., the equation
(30) in [11])

L(α) =
L∑

i=1

log p(vi|α)

= − 1
2

K∑
i=1

[
(Ni + 2a) log

(
vTi B−1i vi + 2b

)
+ log |Bi|

]
+ const

(1)
where a = 102

/
std (v)

2
, v = {vi}i=1,L, b = 1, Bi =

Ii + ΦiA
−1ΦT

i , Ii is an Ni × Ni identity matrix, A =
diag(α1, . . . , αM ), |·| denotes the determinant operator; and
const represents a constant term. Next, the recovery of the
signals θi utilizes the equation (28) in [11].

3. SYNTHESIS OF MULTIPLE CS TASKS

We shall present in this section the idea of synthesizing
multiple CS tasks from a single CS task. The underlying

1v 2 1=v v

= =× ×
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Fig. 1. Synthesis of a new CS task via circular-shifting.

motivation is to generate CS tasks whose signal vectors are
correlated. This would enable the application of the MCS
technique described in Section II to the problem of effective
block-sparse signal reconstruction. The CS task synthesis is
achieved via simple circular-shifting operations.

We illustrate the synthesis method using the example de-
picted in Fig. 1, where for the sake of clarity, the absence
of measurement noise is assumed. The original CS task is
v1 = Φ1θ1, where θ1 is the block-sparse signal to be recov-
ered and it has two nonzero clusters that are highlighted with
shadows. For illustration purpose, the columns of the mea-
surement matrix Φ1 that correspond to the nonzero elements
in the signal θ1 are also shadowed. As shown in Fig. 1, a new
CS task can be synthesized from the original one by circularly
shifting the columns of Φ1 to the right by one column to gen-
erate a new measurement matrix Φ2. Correspondingly, the
elements in θ1 are circularly shifted downward by one sam-
ple to yield the signal θ2. Based on the above operation, we
can obtain Φ1θ1 = Φ2θ2, so both CS tasks have the same
compressive measurements, i.e., v1 = v2. We assume that
this observation holds also for the case where measurement
noise is present. Comparing θ1 and θ2 reveals that the loca-
tions of their nonzero elements have overlaps, which indicates
that the signals of the original CS task and the synthesized
one are correlated. This forms the basis for utilizing MCS
in blocks-sparse signal recovery. More CS tasks can be syn-
thesized by following an approach similar to the one shown
in Fig.1 but varying the direction and the shift amount of the
circular-shifting operations. For instance, we can circularly
shift the columns of the measurement matrix Φ1 to the left by
one column to produce another new CS task.

4. SYNTHESIZED MULTITASK COMPRESSIVE
SENSING

This section presents the proposed SMCS algorithm. Before
providing the details of the computations, we shall first ad-
dress an essential part of the new SMCS algorithm: the eval-
uation of the MCS-based signal recovery quality for a given
set of synthesized CS tasks. This is crucial for selecting the
optimal set of synthesized CS tasks for block-sparse signal
recovery and as a result, it largely determines SMCS’s perfor-
mance.

The quality of the signal recovery is evaluated using the
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MDL principle. Essentially, the MDL principle states that
among a set of competing statistical models, the best mod-
el is the one having the minimum code length for the given
data [13]-[14]. Mathematically, this is equivalent to solving
Ŝ = arg min

S∈M
CL (v, S), where M denotes the set of possi-

ble models and CL (v, S) is the code length function. In this
work, we set CL (v, S) to be the Shannon code length [15],
i.e., CL (v, S) = − log2 p (v, S), where p (v, S) is the prob-
ability density function of v under the model S.

For a better illustration, denote the model of the original
CS task as v1 = Φ1θ1 + ε1. Within the SMCS framework,
the synthesized CS tasks have the same compressive measure-
ment vector as the original CS task (see Section III). Define
the information vector shared by the synthesized and the o-
riginal CS tasks as α. Suppose under a particular set of syn-
thesized CS tasks, the MCS-based signal recovery algorithm
presented in Section II outputs an estimate of α, denoted as
α̂. Then, the code length for v1 can be evaluated using (1) as

CL (v1)
= CL (v1 |α̂ ) + CL (α̂)
= − log2

∫
p (v1 |θ1, α0 ) p (θ1 |α̂, α0 ) p (α0 |a, b ) dθdα0

− log2 p (α̂)
= 1

2

[
(N1 + 2a) log2

(
vT1 D−1v1 + 2b

)
+ log2 |D|

]
+ const1

(2)
where CL (v1 |α̂ ) = − log2 p (v1 |α̂ ) measures the good-
ness of fit between the data and the current model, CL (α̂) =
− log2 p (α̂) represents the model complexity, const1 is a
constant term, D = I1 + Φ1Â

−1ΦT
1 . This accomplishes the

evaluation of the signal recovery quality given a set of syn-
thesized CS tasks.

We are now ready to present the proposed SMCS algo-
rithm for recovering block sparse signals. SMCS improves
the signal recovery in an iterative manner. In each iteration,
a new CS tasks is synthesized using circular-shifting with d-
ifferent direction and shifting amount and is applied together
with the previously synthesized CS tasks and the original CS
task to the MCS algorithm. The above process continues un-
til the number of synthesized CS tasks reaches a pre-specified
value or including the newly synthesized CS task does not
lead to better signal reconstruction quality (or equivalently,
the reduced code length for describing the data (see (2))).

The algorithm flow is depicted in Algorithm 1. Here,
kmax is the pre-specified maximum number of the synthesized
CS tasks. MCSk (v,Φ) represents the MCS-based signal re-
construction [11] in the kth iteration and it has k CS tasks. v
and Φ collect the compressive measurement vectors and their
associated measurement matrices of the CS tasks utilized in
the kth iteration. The outputs of MCSk (v,Φ) are denoted by

α̂k and θ̂
k

1 , i.e., the estimates of the information sharing vec-
tor α and the original signal θ1. The operators Left (Φ1, k)
and Right (Φ1, k) represent that the columns of Φ1 are cir-
cularly shifted to the left and to the right by k columns.

Algorithm 1 (SMCS)

1 Inputs: v1, Φ1, kmax.

2 Output:θ̂1.

3 Initialize k ← 2; v ← {v1}; Φ← {Φ1};
α̂1, θ̂

1

1 ← MCS1 (v,Φ); calculate CL1 (v1) using (2).

4 v ← {v,v1}; Φ← {Φ,Left (Φ1, k − 1)} if k is

even, or Φ← {Φ,Right (Φ1, k − 1)} if k is odd;

α̂k, θ̂
k

1 ← MCSk (v,Φ); calculate CLk (v1) using (2).

5 If CLk (v1) < CLk−1 (v1) or k = kmax, θ̂1 ← θ̂
k

1 and

terminate the algorithm; otherwise, k ← k + 1 and

goto step 4.

5. SIMULATIONS

This section demonstrates via computer simulations the good
performance of the newly proposed SMCS algorithm in re-
covering block-sparse signals. The benchmark algorithms
used are BCoSaMP from [4], BSBL-EM and EBSBL-BO de-
veloped in [9]. Note that BCoSaMP needs the block partition
information of the signal to be reconstructed. The BSBL-EM
and EBSBL-BO algorithms both require a tuning parameter,
namely, the block length h. They are supplied with those
information in the simulations, while the SMCS algorithm
operates without exploring any information on the sparsity
structure of the original signal. We set the maximum number
of CS tasks in the SMCS algorithm to be kmax = 6.

In the first simulation, the Monte Carlo simulations each
with a total number of ensemble runs set to be 50 are carried
out. In each ensemble run, the elements in the measurement
matrix of the original CS task are independently drawn from
a Gaussian distribution with mean 0 and a standard deviation

1√
N1

. Here,N1 is the number of rows in the measurement ma-
trix, which is also the number of elements in the compressive
measurement vector of the original CS task. The signal vec-
tor has 512 elements and they are partitioned into 32 blocks
with a block size of 16. The locations of the non-zero blocks
are chosen randomly at each ensemble run. Zero-mean Gaus-
sian noise with standard deviation 0.01 is added to each of the
N1 measurements that define the data v1. The block length
parameter used in the BSBL-EM and EBSBL-BO algorithms
can have three possible values h = 3, 10, or 20.

We set the number of non-zero blocks in the original sig-
nal to be 8 (i.e, 128 non-zero elements). And we consider
three cases, where the intra-block correlation coefficient for
each non-zero block is uniformly distributed within [0, 0.1],
[0.4, 0.5] and [0.8, 0.9]. The signal reconstruction error is
quantified using

∥∥∥θ − θ̂1∥∥∥
2

/
‖θ‖2, where θ and θ̂1 are the

true and the estimated signals. Fig. 2 plots, as a function of
N1, the signal reconstruction mean square error of the sim-
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Fig. 2. Comparison of BCoSaMP, BSBL-EM, EBSBL-BO and SMCS as a function of the number of compressive measurements
in the original CS task when the intra-block correlation value for each non-zero block is uniformly randomly varied from 0 to
0.1 (a), from 0.4 to 0.5 (b) , from 0.8 to 0.9 (c).

(a) (b) (c) (d)

Fig. 3. Comparison of BSBL-EM and SMCS in image recon-
struction. (a) Linear; (b) BSBL-EM, h = 10; (c) BSBL-EM,
h = 20; (d) SMCS.

ulated BCoSaMP, BSBL-EM , EBSBL-BO and SMCS algo-
rithms in dB scale (i.e., 10log10 (·) dB). It can be observed
that the proposed SMCS outperforms other algorithms and
the performance of BSBL-EM and EBSBL-BO is sensitive to
the choice of the tuning parameter h. For example, the recon-
struction error of EBSBL-BO decreases greatly as h increases
from 3 to a value of 10. It also outperforms BCoSaMP, even
though the latter utilizes the block partition information.

In the following simulation, we compare the performance
of BSBL-EM with that of SMCS in recovering 2-D images
of the MRI image. In this experiment, the elements of the
measurement matrices of the two algorithms in considera-
tion are drawn from a uniform spherical distribution. Fig. 3
summarizes the reconstruction results from a particular run.
Fig. 3(a) is taken from [11]. The original image has the di-
mension of 128 × 128. Here, we utilize the “Daubechies 8”
wavelet expansion with a coarsest scale of 3 and a finest scale
of 6. We find that the nonzero fine-scale coefficients of the
”Daubechies 8” wavelet of the original image also have the
block structure. Fig.3(a) gives the result of the inverse wavelet
transform with 4096 samples, denoted as Linear in the fig-
ure. This is the best performance achievable by all the CS
algorithms considered here. The reconstruction results from
BSBL, when the tuning parameter h = 10 and h = 20, are

shown in Fig. 3(b) and (c) respectively, where we adopted the
hybrid CS scheme that compresses the fine-scale coefficients
only as in [11] into N1=2400 measurements for each task.
Figs. 3(d) gives the recovery result of SMCS. The recovery
errors of Linear, BSBL-EM (h = 10), BSBL-EM (h = 20)
and SMCS in dB scale are -7.3271dB, -6.8984dB, -6.8387dB
and -7.0242 dB, respectively. The results in Fig. 3 shows that
SMCS has the best image reconstruction performance, while
BSBL-EM (h = 10) yields a better performance than that of
BSBL-EM (h = 20).

The reason why we do not show the result of EBSBL is
that Matlab gives the error “Out of memory” when we uti-
lize the EBSBL-EM algorithm with h = 10 or h = 20 (the
parameters of performance about the computer are “Intel(R)
Core(TM) i5-3330S CPU @ 2.70GHz, 4.00GB RAM, 64bit
Win7 operating system”). From the EBSBL algorithm in [10],
we can also find that EBSBL has the heavy computation bur-
den when it deals with the big data.

6. CONCLUSIONS

In this paper, a novel algorithm for recovering a block-sparse
signal from its compressive measurements, termed as the SM-
CS algorithm, was developed. It improves the signal recon-
struction performance by synthesizing new CS tasks via sim-
ple circular-shifting operations and applying the MCS frame-
work for signal recovery. To determine the proper set of the
synthesized CS tasks for reconstructing the block-sparse sig-
nal, the MDL principle was adopted. The new method com-
pletely eliminates the requirement of a priori information on
the sparsity structure of the original signal, as usually need-
ed in previously proposed techniques. Computer simulations
were carried out and the SMCS algorithm was shown to be
able to outperform existing techniques in providing greatly
enhanced block-sparse signal reconstruction quality.
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