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ABSTRACT

Hyperspectral imaging (HSI) is a useful tool for the classifi-
cation of vast areas. High accuracy is achieved by means of
spectral information for each pixel, which inherently leads to
a huge amount of data and, thus, requires costly processing.
We present an Adaptive Compressed Classification (ACC)
framework for HSI that allows a compressive acquisition of
the scene of interest. Since classification is performed in
the compressive domain, expensive reconstruction is avoided,
significantly reducing computational requirements. For ACC,
we propose an adaptive probabilistic approach to optimize the
measurement and basis matrices. Based on real data sets, we
show that Compressed Classification yields high classifica-
tion accuracy close to results obtained for the complete data.
Using the proposed adaptive approach, even higher accuracies
are achieved in all tested cases.

Index Terms— Compressed Sensing, classification, hy-
perspectral imaging

1. INTRODUCTION

Hyperspectral imaging (HSI) is an emerging optical sensing
technique that allows to simultaneously capture hundreds of
bands of the visible and infrared light range. Since each ma-
terial possesses a characteristic spectrum or signature, scene
analysis and classification based on HSI becomes fairly easy
[1]. Today, HSI is commonly used in remote sensing, e.g.
in agriculture, urban mapping, or security applications [2].
Thanks to efficient algorithms and advanced hardware, HSI
finds new applications in many other fields, such as e.g. in
nutrition analysis [3].

Due to the high number of bands, HSI is still considered to
be computationally expensive. Besides high storage demands,
post-processing and analysis are often time-consuming tasks,
requiring costly computation resources. In order to solve this
problem, there has been a lot of research in the field of di-
mensionality reduction, also known as band selection. Most
algorithms exploit the correlation between the bands to select
most important candidates [4]. Recent research is concerned
with the utilization of clustering algorithms for this purpose,

yielding higher classification accuracy with less bands [5, 6].
A rather new approach is to directly capture the hypespec-
tral image in a lower dimensional representation. This can be
achieved by Compressed Sensing (CS), as shown in [7, 8, 9].
In this work, we will build on [7], where CS is used to ef-
ficiently capture hyperspectral images. Based on [10], we
will introduce a Compressed Classification (CC) framework
for HSI that allows the capture of samples in the Compressed
domain, in which they are directly classified. The advantage
of this method is that a costly reconstruction of the HSI at
the base station can be skipped, remarkably reducing com-
putational cost. Further, approximation errors due to a poor
reconstruction are avoided.

In this contribution, we will introduce (i) a system de-
sign for pixelwise Compressed Classification in hyperspec-
tral imaging. Furthermore, we will investigate how the (ii)
basis transform matrix and the (iii) sensing matrices required
for the capturing process can be optimized with respect to the
training samples.

In Section 2, we briefly revisit the idea of Compressed
Classification. In Section 3, a theoretical system for the com-
pressed acquisition of the images is proposed. In Section 4,
we explain how to optimize the measurement and basis matri-
ces with respect to the training samples. Finally, results based
on two widely used data sets are presented in Section 5 and a
short conclusion is drawn in Section 6.

2. COMPRESSED CLASSIFICATION BASICS

Compressed Sensing (CS) is a technique used to capture the
information of a signal x ∈ RD by taking onlyM < D linear
measurements [11, 12, 13],

xc = Φx, (1)

where Φ is our M × D sensing or measurement matrix and
xc ∈ RM is the measurement vector. To recover x from
only M measurements, x is assumed to be sparse in some
domain, i.e. x = Ψs with basis Ψ ∈ RD×D and sparse coef-
ficient vector s ∈ RD. The reconstruction is formulated as an
optimization problem where the sparsity is to be maximized.
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Usually, this problem cannot be solved directly, meaning that
time-consuming iterative algorithms are required.
In hyperspectral imaging, we are mainly interested in the con-
tent of the image, i.e. not in the image itself. Thus, it is desir-
able to skip the step of reconstructing the image and directly
classify in the measurement domain. For this purpose, Dav-
enport et al. presented the Smashed filter [10]. The idea is
to basically transform the training data into the measurement
domain and use a matched filter for the classification.

Calderbank et al. [14] show how to use Support Vector
Machines [15, 16] in the measurement domain. Therefore, a
discriminant function yc(xc) ,

yc(xc) = wcxc + bc, (2)

which is able to separate two classes, is trained on Com-
pressed training samples. The parameters wc ∈ RM and
bc are estimated during training by maximizing the margin
between the decision boundary and the closest training sam-
ples and simultaneously minimizing the empirical hinge loss
on the Compressed training samples. The sign of yc indicates
the predicted class label of xc. Note that there are techniques
that allow discrimination between more than two classes, e.g.
one-vs-one classification, which can also be used here.

3. SYSTEM DESIGN

Let X ∈ RNx×Ny×D denote the hyperspectral image of size
Nx × Ny × D where Nx is the number of pixels in cross-
track and Ny in track direction. The number of bands is de-
noted by D. A pixelwise Compressed Classification requires
an imaging system that preserves the spatial domain of the
scene. The acquisition is performed in the spectral domain
by taking M measurements of all pixels xi,j ∈ RD with
1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny , i.e. we obtain an Nx × Ny ×M
image.

An imaging system based on Compressed Classifica-
tion could be designed as follows. The scene of interest is
measured in scan-lines similar to the push-broom technique
known from HSI in remote sensing [17]. For remote sens-
ing, this system could be mounted on an airborne device.
As shown in Fig. 1, the incident light of a scan-line is split,
using a dispersive element. Similar to [18], the light compo-
nents are reflected from a Digital Mirror Device (DMD) with
D × Nx elements and are detected by a single sensor. Note
that we cannot compressively capture all pixels of the scan
line at once as the spatial information would be mixed. A
possibility to preserve the cross-track resolution is to spread
the spatial information into the time domain. For this pur-
pose, only one DMD line is activated at a time, meaning that
the other lines are set to zero. Hence, a measurement can be
considered as the inner product of the pattern represented by
a DMD line and the signature of the pixel. Having received a
measurement, we permute the active line with the remaining
zero-lines to capture the next pixel. For each scan-line, this
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Fig. 1: Design of a hyperspectral imaging system for the use
of Compressed Classification

procedure is continued Nx times. Additionally, M measure-
ments of each pixel are obtained by choosing M different
DMD patterns in each time step.

4. OPTIMIZATION OF THE ACQUISITION
PROCESS

In Compressed Classification, training samples suitable for
the scene of interest are required. Thus, those samples can
also be used to optimize the sensing matrix Φ and basis ma-
trix Ψ. In the following, we explain how to adapt those matri-
ces. According to Compressed Sensing theory, Φ is designed
such that it is approximately incoherent to the basis matrix Ψ
of the data [11, 12, 13].

We propose to split the adaption process into two steps.
First, an underlying basis matrix Ψ̂ is estimated from the
training data. Second, we adapt a sensing matrix Φ̂ to the
estimated basis Ψ̂. In the sequel, ai represents the ith column
of a matrix A.

4.1. Learning the basis

Suppose we are given N training samples xT,n ∈ R
D

with n = 1, ..., N that we stack into an D × N matrix
XT =

[
xT,1, . . . ,xT,N

]
where the corresponding (unknown)

sparse coefficients are denoted by S ∈ RD×N . In order to
estimate an underlying basis Ψ̂ ∈ RD×J from the training
data, with J ≤ D denoting the number of retained basis vec-
tors, we propose a probabilistic modeling of the quantities so
that a maximum a posteriori estimate (MAP) can be obtained.
Thus, the basis Ψ is estimated by

Ψ̂ = argmax
Ψ,S

p(Ψ,S|XT) (3)

= argmax
Ψ,S

p(XT|Ψ,S)p(S)p(Ψ) (4)

where we assume Ψ and S to be independent. In the sequel,
we make two further assumptions. First, we assume that the
columns of XT and S are independent, respectively, allow-
ing to model each column separately. Second, we assume
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Fig. 2: Classification results for (a) Indian Pines and (b) University of Pavia

that each sample xT,n suffers from additive white Gaussian
noise, i.e. p(xT,n|Ψ, sn) = N

(
Ψsn, σ

2I
)

with mean Ψsn
and variance σ2I, where I is the identity matrix.

According to CS theory, we choose a sparsity-inducing
prior for sn, e.g sn ∼ Laplace(0, b1), with zero mean and
parameter b1. If we additionally assume a flat prior for Ψ,
we obtain the following objective function Esparse(Ψ,S) that
needs to be minimized with respect to Ψ and S:

Esparse(Ψ,S) = ||XT −ΨS||2F + b1

N∑
n=1

||sn||1, (5)

where || · ||F denotes Frobenious’ norm. When minimizing
Eq. (5), a scaling problem can be observed: If we upscale the
columns of Ψ and downscale the corresponding columns of
S, the value of ||XT −ΨS||2F might not change, but the spar-
sity term b1

∑N
n=1 ||sn||1 may decrease to zero and hence, no

sparsity is achieved. A convenient way to overcome this prob-
lem is to normalize each basis vector Ψn, i.e. Ψ̃n := Ψn

||Ψn||2
[19].

As Ψ is supposed to be a basis matrix, we additionally re-
quire (approximately) orthogonal columns, i.e. ΨTΨ ≈ D,
where D is a J × J diagonal matrix. Therefore, we construct
the following energy function Eorth(Ψ) that needs to be min-
imized with respect to Ψ:

Eorth(Ψ) = ||ΨTΨ−D||2F . (6)

Combining Eq. (5) and Eq. (6) results in

E(Ψ,S) =||XT −ΨS||2F + b1

N∑
n=1

||sn||1

+ b2||ΨTΨ−D||2F ,

(7)

where b2 is a regularization parameter to control the orthogo-
nality strength.

Finally, Eq. (7) is minimized with respect to Ψ and S.
For this purpose, a gradient descent method is chosen where
Ψ and S are iteratively updated in turns. In particular, Lee
and Seung present in [19] a multiplicative update rule:

Ψ← Ψ ◦ [∂E/∂Ψ]−

[∂E/∂Ψ]+
and S← S ◦ [∂E/∂S]−

[∂E/∂S]+
, (8)

where [·]+ and [·]− are positive and negative parts of the
partial derivatives and ◦ denotes the Hadamard product. Us-
ing this optimization strategy, Ψ and S are additionally con-
strained to be non-negative, which is related to Non-Negative
Matrix Factorization (NMF) [19, 20]. Though this constraint
is not required, this method has the advantage of choosing the
step width automatically as opposed to many other gradient
based optimization algorithms.

Note that the choice of parameters b1, b2 and J in Eq. (6)
has a significant influence on the result. Since we are inter-
ested in maximizing the classification accuracy, we will select
those in a cross-validation step with respect to the classifica-
tion accuracy.

4.2. Learning the sensing matrix

Given a basis Ψ ∈ RD×J , we suggest to adapt the sens-
ing matrix Φ ∈ R

M×D such that the correlation of the
columns of ΦΨ is minimized. As in Section 4.1, we solve
(ΦΨ)TΦΨ ≈ R, where R is a J × J diagonal matrix.
For simplicity, let us assume that the columns of ΦΨ are
normalized so that we can assume

(ΦΨ)TΦΨ ≈ I (9)

(ΦΨΨT )TΦΨΨT ≈ ΨΨT , (10)

where I is a J × J identity matrix. Furthermore, assum-
ing J = D, we can easily find an optimal solution for Φ
by substituting ΨΨT by its eigenvalue decomposition, i.e.
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Table 1: Classification results (in [%]) of the data sets with 10% of the samples

Indian Pines University of Pavia
SF SVM SF SVM

OA CA OA CA OA CA OA CA
All 73.725 75.093 85.766 84.892 77.994 73.957 94.034 92.226
ACC 71.565 72.831 81.801 81.812 82.772 79.442 90.981 88.430
CC 70.454 71.131 77.206 77.529 79.938 76.895 88.167 85.107

ΨΨT = VΛVT , with V ∈ RD×D containing the eigenvec-
tors and the diagonal matrix Λ ∈ RD×D the eigenvalues on
the main diagonal. Clearly, the optimal solution is then given
by

Φopt = Λ−1/2VT (11)

which still approximately holds for J < D. Based on this
result, we reformulate the problem in Eq. (10) and solve the
optimization problem

Φ̂′ = argmin
Φ′

||Φ′ −Φopt||2F s.t. rank(Φ′) =M (12)

where Φ′ is a D × D matrix of rank M . Eckart and Young
[21] provide a closed form solution for Eq. (12), known as
the Eckart-Young-Theorem. In fact, we use only the top M
eigenvalues of Φopt to estimate Φ′, i.e.

Φ̂′ = dΛ−1/2eMVT , (13)

where d·eM choses only the top M values and replaces the
remaining elements with zero. Subsequently, we removeD−
M rows in Φ̂′ to obtain the estimate Φ̂ of the M ×D sensing
matrix.

5. RESULTS & DISCUSSION

We evaluated the proposed methods using Indiana’s Indian
Pines (IP) [22] and the University of Pavia (UP) [23] data
sets based on the overall accuracy (OA) and class accuracy
(CA) [6]. The Indian Pines data set has a size of 145 × 145
pixels and 220 bands in total (including noisy bands) mainly
showing 16 different classes of vegetation. The University of
Pavia image shows an urban scene comprised of 9 different
classes. It has a size of 610× 340 pixels and 107 bands.

In order the show the performance of the presented meth-
ods, two classifiers are used: Matched or Smashed filter (SF)
[10] and Support Vector Machines (SVM) [24]. In the se-
quel, we show the overall classification accuracy of Com-
pressed Classification (CC), Adaptive Compressed Classifi-
cation (ACC), and conventional classification, using all avail-
able data (All) for different subsampling rates, i.e. reduced
numbers of bands M . Note that All is clearly independent
of M since all bands are used and, thus, can be considered
as baseline. In each setup we compute the correct classifica-
tion accuracies by randomly splitting the data set into 10%

training and 90% test data. The results are averaged over 50
repetitions, using different test and training sets and sensing
and basis matrix in each run. Note that this leads to some fluc-
tuations in the results for All. In order to estimate the param-
eters b1, b2 and J for ACC, cross-validation is used (IP: b1 =
0.75, b2 = 0.5, J = 100; UP: b1 = 0.25, b2 = 0.25, J = 50).
The results for the data sets are shown in Fig. 2. Most im-
portant, we observe that even for a low number of measure-
ments, CC as well as ACC yield results close to the conven-
tional classification accuracy. Capturing only 10% of the data
gives in average an accuracy of 77.15% for the Indian Pines
and 88.17% for the University of Pavia using SVMs. In case
of SF applied to IP, CC and ACC provide even more accu-
rate results than All. Using the proposed adaptation of the
basis and measurement matrices, the results are in average
improved by 3.5% to 7% . This effect becomes more appar-
ent if we decrease the number of measurements to e.g. only
three measurements, which leads to an improvement of more
than 6.5% (UP) and 9.3% (IP). Tab. 1 shows more detailed
results for IP and UP where only 10% of the original data is
used for classification.

6. CONCLUSION

We extended the work on Compressed Sensing in hyperspec-
tral imaging to a Compressed Classification framework. The
benefits of this new approach are numerous: (i) a computa-
tionally expensive reconstruction of the data is not required
and (ii) the measurement and transform matrices can be op-
timized using the available training data. The results based
on real data show that the presented approach works well
and easily outperforms conventional Compressed Sensing
and Classification methods in hyperspectral imaging. Future
research involves the adaptation of other classifiers and the
exploitation of the class information during optimization of
the matrices.
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