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ABSTRACT

Recent research in off-the-grid compressed sensing (CS) has demon-
strated that, under certain conditions, one can successfully recover
a spectrally sparse signal from a few time-domain samples even
though the dictionary is continuous. In this paper, we extend off-the-
grid CS to applications where some prior information about spec-
trally sparse signal is known. We specifically consider cases where
a few contributing frequencies or poles, but not their amplitudes or
phases, are known a priori. Our results show that equipping off-the-
grid CS with the known-poles algorithm can increase the probability
of recovering all the frequency components.

Index Terms— compressed sensing, spectral estimation, basis
mismatch, matrix completion, known poles

1. INTRODUCTION

Compressed sensing (CS) is a new sampling paradigm which postu-
lates uniting two critical steps involved in processing a signal: digi-
tal data acquisition and its compression [1] [2]. To recover a signal
from fewer random measurements, CS algorithms harness the inher-
ent sparsity of the signal under some appropriate basis or dictionary.

For example, consider a frequency-sparse signal x[l] represented
as a sum of s complex exponentials,

x[l] =

s∑
j=1

cje
i2πfj l =

s∑
j=1

|cj |a(fj , φj)[l] , l ∈ N (1.1)

where cj = |cj |eiφj (i =
√
−1) represents the complex coefficient

of the frequency fj ∈ [0, 1], with amplitude |cj | > 0, phase φj ∈
[0, 2π), and frequency-atom a(fj , φj)[l] = ei(2πfj l+φj). We use
the index set N = {l | 0 ≤ l ≤ n − 1}, where |N | = n, n ∈ N,
to represent the time samples of the signal. It is customary to label
only the frequency information - either the exponentials ei2πfj l or
just fj - as poles [3] [4].

When fj takes values only on a discrete frequency grid, the Dis-
crete Fourier Transform (DFT) matrix can be used as an appropriate
finite discrete dictionary for the sparse representation of x[l]. How-
ever, it is quite possible for the true frequencies to be anywhere in
the continuous domain [0, 1]. Since the true continuous-domain fre-
quencies may lie off the center of the DFT bins, the DFT represen-
tation in this case would destroy the sparsity of the signal and result
in the so-called “basis mismatch” [5]. This can be mitigated to a
certain extent by finer discretization of the DFT grid. But that could
lead to higher correlation of the sensing matrix and, thus, computa-
tionally infeasible or expensive signal recovery [6].

These numerical problems associated with the spectral spill-over
in the Dirichlet kernel have recently been addressed by the off-the-
grid compressed sensing approach [7] [8]. This method relies on
atomic norm minimization and guarantees recovery of frequencies

lying anywhere in the continuous domain [0, 1] from a limited
number of random observations, provided the line spectrum satisfies
nominal resolution conditions. A two-dimensional generalization
to this method involves Hankel matrix completion and guarantees
robustness against corruption of data [9].

These approaches to off-the-grid frequency recovery assume
that, other than the sparse nature of signal frequencies, little is
known about the signal a priori. However, in many applications
such as radar [10], acoustics [11], and power systems [12], some
information about the signal may already be known through pre-
vious measurements or known electrical properties of the signal
source. For example, a radar engineer may be aware of the Doppler
signature of standard targets such as a fighter jet or a commercial
airplane [10]. Similarly, in a weather radar scenario, the range of
Doppler frequencies and the spectrum widths for certain types of
precipitation events (storms or tornadoes) are often known from
previous observations [13].

In this work, we consider a frequency-sparse signal composed
of multiple frequencies, of which a few frequencies are known a
priori. However, the amplitudes and phases of these frequencies are
not known. We then propose the known-poles algorithm based on the
conditional atomic norm minimization to first recover the complex
coefficients of these known frequencies. Once the known frequen-
cies are filtered from the original signal, the problem then simplifies
to a search for the remaining frequency components in the signal.

1.1. Main Results

Suppose p out of s frequencies contributing to x[l] are known a pri-
ori. Suppose that fj’s, s − p + 1 ≤ j ≤ s, are known frequencies.
Then,

x[l] =

s−p∑
j=1

cje
i2πfj l +

s∑
j=s−p+1

dje
i2πfj l, l ∈ N (1.2)

where cj and dj are unknown complex coefficients of these unknown
and known frequencies respectively. Our main result in this work
demonstrates that if the known frequency information is included
in the off-the-grid atomic norm minimization approach, then all the
remaining frequencies can be exactly recovered with a higher prob-
ability, even though all the frequencies are continuous-domain fre-
quencies. Further, the recovery of the entire unknown spectral con-
tent using known-poles algorithm is possible with a smaller number
of random observations. When the frequencies do not satisfy any
minimum resolution conditions, our algorithm suffers lesser degra-
dation in the spectral recovery performance compared to the algo-
rithm which does not use any prior information.
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1.2. Relation To Prior Work

Estimation of the parameters of a frequency-sparse signal has been
a long-pursued problem[14]. A description of several common tools
and methods dealing with the line spectral estimation of regularly
sampled signals in the presence or absence of noise can be found in
[15] and [16]. These methods have often been accompanied by an
undercurrent of research on the spectral analysis with available prior
information. For example, the classical Prony’s method can be eas-
ily modified to account for known frequencies [11]. Variants of the
subspace-based frequency estimation methods such as MUSIC and
ESPRIT have also been formulated [17] [18], where prior knowl-
edge can be incorporated for parameter estimation. For applications
wherein only approximate knowledge of the frequencies is available,
the spectral estimation described in [19] applies circular von Mises
probability distribution on the spectrum.

For irregularly spaced samples, sparse signal recovery meth-
ods which leverage on prior information have recently gained atten-
tion for general applications [20] [21] [22] as well as, specifically,
spectral estimation [23]. To the best knowledge of the authors, the
CS-based spectral estimation methods - aforementioned and others
- have not considered spectral components lying off the given fre-
quency grid.

Our model and methods for recovery of the frequency-sparse
signal in the continuous dictionary are inspired by [8] and [7]. We
additionally show that, if some poles are known, the performance of
the recovery can be improved in terms of the probability of success-
ful recovery and the number of random samples needed.

2. SYSTEM MODEL

The signal in (1.1) can be modeled as a positive linear combination
of the unit-norm frequency-atoms a(fj , φj)[l] ∈ A ⊂ Cn where A
is the set of all frequency-atoms. These frequency atoms are basic
units for synthesizing the frequency-sparse signal. Further, suppose
the signal in (1.1) is observed on the index set M ⊂ N , |M| =
m � n where m observations are chosen uniformly at random.
Then, to estimate the remainingN \M samples of the signal x, [24]
suggests minimizing the atomic norm ||x̂||A - a sparsity-enforcing
analog of `1 norm for a general atomic set A-among all vectors x̂
leading to the same observed samples as x. The atomic norm is
given by,

||x̂||A = inf
cj ,fj

{
s∑
j=1

|cj | : x̂[l] =

s∑
j=1

cje
i2πfj l , l ∈M

}
(2.1)

The semidefinite formulation of ||x̂||A is defined as follows:

Definition 2.1. [8] Let Tn denote the n × n positive semidefinite
Toeplitz matrix, t ∈ R+, Tr(·) denote the trace operator and (·)∗
denote the complex conjugate. Then,

||x̂||A = inf
Tn,t

{
1

2|N |Tr(Tn) +
1

2
t :

[
Tn x̂
x̂∗ t

]
� 0

}
(2.2)

The positive semidefinite Toeplitz matrix Tn is related to the
frequency atoms through the following result by Carathèodory [25]:

Tn = URU∗ (2.3)

where Ul′j′ = a(fj′ , φj′)[l
′], (2.4)

R = diag([b1, · · · , br′ ]) (2.5)

The diagonal elements of R are real and positive, and r′ =
rank(Tn).

Consistent with this definition, the atomic norm minimization
problem for the frequency-sparse signal recovery can now be formu-
lated in a semidefinite program (SDP) with m affine equality con-
straints:

minimize
Tn,x̂,t

1

2|N |Tr(Tn) +
1

2
t

subject to
[
Tn x̂
x̂∗ t

]
� 0 (2.6)

x̂[l] = x[l], l ∈M

3. KNOWN-POLES ALGORITHM

We now consider the case when some frequency components are
known a priori but their corresponding amplitudes and phases are
not. A common approach to harness the prior information about the
sparse signal is to replace the classical `1 norm with the weighted
`1 norm [21] [22]. However, the known poles signal does not lead
to a trivial application of the weighted `1 approach, since all the fre-
quencies have a continuous domain. Therefore, we propose the con-
ditional atomic norm minimization as the known-poles algorithm.

Let the index set of all the frequencies be S, |S| = s. Let P be
the index set of all the known frequencies, and |P| = p. Namely,
we assume that the signal x contains some known frequencies fj ,
j ∈ P ⊆ S, |P| = p. For unknown frequencies, let us denote their
complex coefficients as dj and their phaseless frequency atoms as
αj [l] = a(fj , 0)[l] = ei2πfj l. We define the conditional atomic
norm ||x̂||A|P for the known poles as follows:

||x̂||A|P = inf
cj ,dj ,fj

{
s−p∑
j=1

|cj | : x̂[l] =

s−p∑
j=1

cje
i2πfj l

+

s∑
j=s−p+1

dje
i2πfj l , l ∈M

}
(3.1)

The semidefinite formulation for ||x̂||A|P is given as follows (proof
omitted due to space limitations):

Definition 3.1. The conditional atomic norm for a vector x̂ is given
by

||x̂||A|P = inf
Tn,x̃,t,dj

{
1

2|N |Tr(Tn) +
1

2
t :

[
Tn x̃
x̃∗ t

]
� 0

}
(3.2)

where x̃[l] = x̂[l]−
∑
j∈P

αj [l]dj represents the positive combination

of complex sinusoids with unknown poles.

The conditional atomic norm minimization problem can be
posed as the following semidefinite formulation in a similar way as
in (2.6):

minimize
Tn,x̂,x̃,t,dj

1

2|N |Tr(Tn) +
1

2
t

subject to
[
Tn x̃
x̃∗ t

]
� 0 (3.3)

x̂[l] = x[l], l ∈M

x̂[l] = x̃[l] +
∑
j∈P

αj [l]dj , l ∈M
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x̃ can be viewed as the signal filtered of the known poles. The re-
maining unknown frequencies in x̃ can be identified by the frequency
localization approach [8] based on computing the dual polynomial,
which we restate for x̃ in Algorithm 3.1.

Algorithm 3.1. Known-poles algorithm

1: Solve the semidefinite program (3.3) for conditional atomic norm minimization to
obtain x̃.

2: Solve the following dual problem to obtain the optimum solution q?

maximize
q

〈q, x̃〉R

subject to ||q||∗A ≤ 1 (3.4)

q[l] = 0, l ∈ N \M

where || · ||∗ denotes the dual-norm.
3: The unknown frequencies fj , identify as |〈q?, αj〉| = 1 where j ∈ P . For

j /∈ S \ P , |〈q?, αj〉| < 1.
4: All the unknown frequencies identified, hereafter their corresponding complex co-

efficients can be recovered by solving a system of simultaneous linear equations
x̃[l]−

∑
j∈S\P

cjαj [l] = 0.

4. PERFORMANCE ANALYSIS

In this section, we set out to give necessary and sufficient conditions
under which (3.3) recovers existing frequencies fj , 1 ≤ j ≤ s and
their complex coefficients, regardless of what amplitudes these s fre-
quency components take. We first need to define a notion of “feasible
matrix” A ∈ Cm×(n+s). Recall that fr, 1 ≤ r ≤ s, are existing
frequencies, and fr, s−p+1 ≤ r ≤ s, are known frequencies. For
a matrix A ∈ Cm×(n+s) and an index set K ⊆ {1, 2, ..., n+ s}, we
defineD(AK) as the dictionary (set) of columns inA corresponding
to the index set K. We further define a few index sets as follows:

S∗ = {r|n+ 1 ≤ r ≤ n+ s}
P∗ = {r|n+ s− p+ 1 ≤ r ≤ n+ s}
N ∗ = {r|1 ≤ r ≤ n}
N ∗ ∪ (S∗ \ P∗) = {r|1 ≤ r ≤ n+ s− p}

In the following definition of a “feasible matrix” A ∈ Cm×(n+s),
we will use AS∗ to accommodate the basis vectors for existing fre-
quencies, and AP∗ to accommodate the basis vectors for known fre-
quencies.

Definition 4.1. A matrix A ∈ Cm×(n+s) is called a feasible matrix
if

• Ar = a(fr−n, φr−n)[M], n + 1 ≤ r ≤ n + p + s, where
M is the sampling time index set;

• Ar = a(f̃r, φ̃r)[M], 1 ≤ r ≤ n, where f̃r, 1 ≤ r ≤ n, are
n distinct frequencies in [0,1]; and φ̃r ∈ [0, 2π), 1 ≤ r ≤
n;

• fj /∈ {f̃r|1 ≤ r ≤ n} when s− p+ 1 ≤ j ≤ s.

We use N(A) to denote the null space of A. We are now ready
to give a statement of the conditions for successful recovery.

Theorem 4.2. Let x[l] =

s∑
j=1

cje
i2πfj l =

s∑
j=1

|cj |a(fj , φj)[l],

l ≥ 0. Assume that {fj | s − p + 1 ≤ j ≤ s} are p known fre-
quencies (but their amplitudes and phases are still unknown). Then,
for all possible amplitudes |cj | > 0, 1 ≤ j ≤ s, the known-poles

algorithm uniquely recovers all the frequencies, their corresponding
phases and amplitudes, if and only if the following holds.

For every feasible matrix A ∈ Cm×(n+s) and for every h ∈
{ h | h ∈ N(A), h 6= 0, hN∗∪(S∗\P∗) ∈ Rn+s−p, hS∗\P∗ <
0, hN∗ ≥ 0}, ||hN∗ ||1 > ||hS∗\P∗ ||1 unless the following three
statements hold true simultaneously.

(1) a(fj , φj) ∈ D(AN∗), when 1 ≤ j ≤ s− p;
(2) hr1 = −hr2 ,
whenever r1 ∈ N ∗, r2 ∈ S∗ \ P∗, and Ar2 = Ar1 ;

(3) hr3 = 0,

if r3 ∈ N ∗ ∪ S∗ and Ar3 /∈ D(AS∗\P∗).

Due to space limitations, we omit the proof in this paper.
We remark that, intuitively, when the size of known frequencies
(namely |P∗|) increases, it may be easier to satisfy the key condition
‖hN∗‖1 > ‖hS∗\P∗‖1 in Theorem 4.2 since, roughly speaking,
‖hS∗\P∗‖1 decreases when |P∗| increases. So we expect that when
more prior information is known, it becomes easier to recover all the
frequencies.

5. NUMERICAL SIMULATIONS

We evaluated the known-poles algorithm through a number of sim-
ulations using SDPT3 [26] to solve the semidefinite program. In all
our experiments, the s frequencies of the artificially generated signal
were drawn at random in the band [0, 1]. Except for Experiment 4,
the sampled frequencies were also constrained to have the minimum
modulo spacing of ∆f = 1/b(n−1)/4c between the adjacent frequen-
cies. This is the theoretical resolution condition for the results in [8],
although numerical experiments suggested that frequencies could be
closer, i.e., ∆f could be 1/(n−1). While working with the known
poles, we draw the first known frequency uniformly at random from
the set of s frequencies. As the number p of known poles increases,
we retain the previously drawn known frequencies and draw the next
known frequency uniformly at random from the remaining set of ex-
isting signal frequencies.

The phases of the signal frequencies were sampled uniformly at
random in [0, 2π). The amplitudes |cj |, j = 1, · · · , s were drawn
randomly from the distribution 0.5 + χ2

1 where χ2
1 represents the

chi-squared distribution with 1 degree of freedom.
Experiment 1. We simulated a low-dimensional model with the
triple (n,m, s) = (32, 9, 4) and first solved the semidefinite pro-
gram (2.6) which does not use any prior information, i.e., p = 0.
For the same realization of the signal, we then successively increase
p up to s−1, and solve the optimization (3.3) of the known-poles al-
gorithm. At every instance of solving an SDP, we record the number
k of successfully recovered frequencies along with their complex
coefficients. This number also includes the known frequencies if the
recovery process returns exact values of their complex coefficients.
k = s corresponds to complete success, i.e., recovering all of the
unknown spectral content. k = 0 is complete failure, including the
case when the complex coefficients of the known frequencies could
not be recovered. Figure 1 shows the probability P of recovering
k frequencies over 1000 trials. We observe that even though the
complex coefficients of the known frequencies are unknown, the
known-poles algorithm increases the probability of accurately re-
covering all or some of the unknown spectral content.
Experiment 2. We repeat the first experiment for the higher-
dimensional pair (n,m) = (256, 40) and vary s. The probability P
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Fig. 1: The probability P of recovering the unknown spectral con-
tent. The probability is computed for 1000 random realizations of
the signal for the triple (n,m, s) = (32, 9, 4). (For k > 0, k ≤ p
being the invalid cases, the corresponding bars have been omitted.)

over 100 random realizations of the signal is shown in Figure 2 for
selected values of s. We observe that the probability of successfully
recovering all the frequencies using the known-poles Algorithm 3.1
increases with p.
Experiment 3. Figure 3 shows the probability P of complete suc-
cess, (i.e. k = s), as a function of m over 100 trials for the twin
(n, s) = (80, 6). We note that, the known-poles algorithm achieves
the same recovery probability when compared to (2.6) with a smaller
number of random observations.
Experiment 4. We now consider these two cases: (a) when
∆f = 1/(n−1), the resolution limit for the numerical experiments
in [8], and (b) when the frequencies are drawn uniformly at random
and do not adhere to any minimum resolution conditions. Figure 4
shows the probability P of recovering k frequencies over 1000 trials
for the triple (n,m, s) = (40, 15, 7). We note that the probability
of complete success with known poles suffers relatively little degra-
dation for the random frequency resolutions. These trials include
instances when the minimum resolution condition does not hold,
formulation in (2.6) shows complete failure but the known-poles
algorithm recovers the unknown spectral content with complete
success.

6. SUMMARY

Our off-the-grid CS formulation for the known-poles algorithm sug-
gests that using the known frequencies of the signal, the signal recov-
ery performance can be improved leading to a higher probability of
recovering some or all the residual spectral information - frequency,
amplitude and phase - with smaller number of random observations.
In the future, it would be interesting to further investigate theoreti-
cal performance limits of off-the-grid compressed sensing with prior
information.
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Fig. 2: The probability P of recovering the unknown spectral con-
tent for selected values of s. The probability is computed for 100
random realizations of the signal with (n,m) = (256, 40). (The
lower diagonal cases when k > 0, k ≤ p are invalid, and do not
contribute to the result.)

Fig. 3: A higher probability P of recovering all the unknown fre-
quency content can be achieved with a smaller numberm of random
observations using the known-poles algorithm. The probability is
computed for 100 random realizations with (n, s) = (80, 6).

Fig. 4: Performance of the known-poles algorithm when the frequen-
cies do not satisfy any nominal resolution conditions. The probabil-
ity P of successfully recovering k frequencies is computed for 1000
realizations of the signal with dimensions (n,m, s) = (40, 15, 7).
(a) ∆f = 1/(n−1) (b) Frequencies are selected uniformly at random
in the band [0, 1].
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