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ABSTRACT
We develop a new model and algorithm for machine

learning-based learning analytics, which estimate a learner’s
knowledge of the concepts underlying a domain. Our model
represents the probability that a learner provides the correct
response to a question in terms of three factors: their un-
derstanding of a set of underlying concepts, the concepts
involved in each question, and each question’s intrinsic diffi-
culty. We estimate these factors given the graded responses to
a set of questions. We develop a bi-convex algorithm to solve
the resulting SPARse Factor Analysis (SPARFA) problem.
We also incorporate user-defined tags on questions to facili-
tate the interpretability of the estimated factors. Experiments
with synthetic and real-world data demonstrate the efficacy
of our approach.

Index Terms— bi-convex optimization, content analyt-
ics, learning analytics, personalized learning, factor analysis

1. INTRODUCTION

Textbooks, lectures, and homework assignments were the
answer to the main educational challenges of the 19th cen-
tury, but they are the bottleneck of the 21st century. To-
day’s textbooks are typically static, linear in organization,
time-consuming to develop, soon out-of-date, and expensive.
Lectures remain a primarily passive experience of copying
down what an instructor says and writes on a board. Home-
work assignments that are not graded for weeks provide poor
feedback to learners on their learning progress. Even more
importantly, today’s courses provide only a “one-size-fits-all”
learning experience that does not cater to the background,
interests, and goals of individual learners. Modern machine-
learning (ML) algorithms provide a golden opportunity to
reinvent the way we teach and learn by making it more per-
sonalized and, hence, more efficient.

One attractive venue for ameliorating many of the short-
comings associated with the traditional education approach is
intelligent tutoring systems (ITS) [1–3]. On one hand, clas-
sical ITS systems consist of pre-defined rules hard-coded by
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domain experts, which are used to provide automated feed-
back. While such systems have the potential to allow for an
instantaneous, feedback to learners, they require enormous
investment in both time and money. On the other hand, ML-
based ITS provide an affordable solution by mining learner
data to provide feedback, however they tend to use rather un-
sophisticated machine-learning techniques [4], which limits
their efficacy. In our opinion, one way in which machine-
learning can ameliorate this situation is by augmenting the
process of learning analytics (LA), which monitors and an-
alyzes the learners’ interaction with the course’s contents.
LA then provides automatic, targeted feedback to learners, to
their instructors, and to the content authors.

Developing a principled method for LA presents a number
of challenges. For example, how should one model knowl-
edge and learner response data? How can one reliably es-
timate a learner’s understanding of the various subject mate-
rial? Given a database of potential practice problems, how can
one identify the problems that are relevant to certain knowl-
edge components?

This paper develops a novel statistical framework for LA
that enables the analysis of learner responses to a set of ques-
tions. We assume that the knowledge base is decomposable
into a set of latent knowledge components, which we term
concepts, that each learner should learn. For example, an
introductory calculus course would include concepts such as
“integration-by-parts”, “l’Hôpital’s rule”, etc. Our goal is to
develop efficient methods to i) discover the relationships be-
tween concepts and questions, ii) estimate each learner’s con-
cept mastery, and iii) estimate each question’s difficulty.

Our LA framework is based on a principled statistical
model relying on latent factor analysis [5] from binary re-
sponse values. Inspired by our statistical framework, we pro-
pose SPARFA-M, a bi-convex optimization technique for pro-
bit factor analysis to compute point estimates of the parame-
ters of interest at low computational complexity. Our pro-
posed model and algorithms differ significantly from previ-
ous work in factor analysis [6–8] due to the additional struc-
ture (i.e., non-negativity combined with sparsity) arising from
our target application. We demonstrate the efficacy of the
developed LA framework on both synthetic and real educa-
tional data. In the case of real-world datasets, we show that
SPARFA-M can i) visualize question–concept associations as
a bi-partite graph, ii) analyze the concept knowledge of each
learner and provide personalized feedback on what he/she
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should improve on, and iii) identifying potentially off-topic
or ill-posed questions that could potentially be removed for
conciseness of the course/assessment.

2. RELATED WORK

A significant body of work in ML-based ITS uses Bayesian
belief networks to probabilistically model and analyze learner
response data [9, 10]. The deployed models, however, rely
on pre-defined question–concept dependencies. In contrast,
the LA framework proposed next discovers question–concept
dependencies relying only on learner responses to questions.
Matrix and tensor factorization methods, as, e.g., proposed
in [11, 12], treat learner responses as real-values and do not
consider a probabilistic model in their analysis, which differs
substantially from our framework. We finally note that recent
results presented in [13–15] address the problem of predicting
missing entries in a binary-valued learner–question response
matrix, an emerging field in educational data mining [16].
However, both methods retrieve data in a way that inhibits
the interpretation of the underlying knowledge, which makes
them unsuitable for LA. Item response theory (IRT) uses sta-
tistical models to analyze graded question response data [17,
18]. Although the SPARFA model shares similarity to the
Rasch model [19], corresponding algorithms do not provide
disciplined algorithms to estimate the model parameters.

3. STATISTICAL MODEL FOR LEARNING
ANALYTICS

We view a given knowledge domain/course as consisting of
both content and assessments. Each assessment consists of
a number of questions that test the learner’s understanding
of various portions of the course’s content. The latent factors
governing the learners’ answers to questions are referred to as
concepts. For the sake of simplicity of exposition, we model
the answers to questions as binary-valued entries, with 0 and
1 denoting incorrect and correct responses, respectively.

3.1. Sparse probit model for learner response data

Assume that there are N learners, Q questions, and K un-
derlying concepts. Let the column vector cj ∈ RK , j ∈
{1, . . . , N}, represent the latent concept mastery of the jth

learner, with its kth component representing the jth learner’s
understanding of the kth concept. Then, for the ith question,
with i ∈ {1, . . . , Q}, we propose the following model for the
learner–response relationships:

Zi,j = wT
i cj + µi, ∀i, j (1)

Yi,j ∼ Ber(Φ(Zi,j)), (i, j) ∈ Ωobs.

Here, Yi,j ∈ {0, 1} denotes the binary-valued response vari-
able of the jth learner to the ith question. The set Ωobs ⊆

{1, . . . , Q} × {1, . . . , N} in (1) contains the indices associ-
ated to the observed learner–response data, in case Y is not
fully observed. The slack variable Φ(Zi,j) ∈ [0, 1] governs
the probability of learner j answering question i correctly,
Ber(z) designates a Bernoulli distribution with mean z, and
Φ(x) =

∫ x
−∞N (g|0, 1)dg denotes the inverse probit func-

tion with N (g|0, 1) representing the value of the probability
density function of a standard normal distribution evaluated
at g. The column vector wi ∈ RK models the concept asso-
ciations; that is, it encodes how question i is related to each
concept. The scalar µi ∈ R models the intrinsic difficulty of
question i. In the remainder of the paper, we will often write
(1) in matrix form as

Z = WC + M, (2)

Yi,j ∼ Ber
(
Φ(Zi,j)

)
, (i, j) ∈ Ωobs,

where Y, M, and Z areQ×N matrices, W = [w1, . . . ,wQ]T

and C = [c1, . . . , cN ] areQ×K andK×N matrices, respec-
tively. Matrix M = µ11×N is formed by µ = [µ1, . . . , µQ]T

and the N -dimensional all-ones row vector 11×N .

3.2. Fundamental assumptions

Estimating latent factors W and C from observation matrix
Y usually is in an ill-posed inverse problem. To reduce the
number of parameters and to improve identifiability, we build
our framework on the following three assumptions, which we
argue are reasonable for typical exam and homework ques-
tions across all levels of education:

(A1) Low-dimensionality: K is small relative to N and Q,
implying question redundancy and low-dimensionality
of the learner–question response space.

(A2) Sparsity: The ability to answer a question correctly de-
pends only on a few concepts (relative to all concepts
covered by a given course). Therefore, W is sparse.

(A3) Non-negativity: The learners’ mastery of concepts
should not reduce the chance of correctly answering
questions, i.e., mastery should never be “harmful.” The
entries of W are therefore non-negative; this provides
additional interpretability to the element of C, where
large, positive values denote strong concept mastery
while large negative values denote poor mastery.

The goal of the algorithm we develop next is to estimate W,
C, and µ from the binary-valued observation matrix Y while
enforcing (A1), (A2), and (A3).

4. SPARFA-M: SPARSE PROBIT BINOMIAL
FACTOR ANALYSIS

Our algorithm to estimate the factors W, C, and µ from re-
sponse data Y solves a factor-analysis problem using probit
regression, in contrast to previous work that perform principal
component analysis on binary matrix data [8].
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4.1. Problem formulation

To estimate W, C, and µ, we maximize the log-likelihood of
Y subject to the assumptions (A1), (A2), and (A3), where the
likelihood of each response variable is given by

p(Yi,j |wi, cj) = Φ
(
wT
i cj
)Yi,j

(
1− Φ(wT

i cj)
)1−Yi,j

.

To this end, we seek to solve the following `1/`2-norm regu-
larized optimization problem:

(P) minimize
W,C :W≥0

−
∑
i,j:(i,j)∈Ωobs

log p(Yi,j |wi, cj)

+ λ
∑
i ‖wi‖1 + γ

2

∑
j ‖cj‖22.

Here, the first regularization term λ
∑
i‖wi‖1 induces spar-

sity on each vector wi as required by (A2); the parameter
λ > 0 controls the sparsity level. The constraint in (P) im-
poses non-negativity in W. Since one can arbitrarily increase
the scale of either W or C while decreasing the scale of the
other accordingly, we gauge the vectors cj using the second
regularization term γ

2

∑
j‖cj‖

2
2 with regularization parameter

γ > 0. We incorporate the intrinsic difficulty vector µ in (2)
by adding it as a column to W, and by accordingly augment-
ing C with a fixed all-ones row vector.

4.2. The SPARFA-M algorithm

Since the probit log-likelihood function is concave in the
product WC [20], the problem (P) is bi-convex with respect
to the individual factors W and C. To arrive at a practicable
way of finding an approximate solution to (P), we propose
SPARFA-M, an algorithm that bases on the following alter-
nating optimization approach.

After initializing C and W with random matrices, we iter-
atively optimize the objective of (P) for both factors in an al-
ternating fashion. Thus, each (outer) iteration consists of two
phases. In the first phase, we hold W constant and separately
optimize each vector cj ; in the second phase, we hold C con-
stant and separately optimize each vector wi. Individual sub-
problems in each phase are carried out by iterative methods,
which form the inner iterations of SPARFA-M, discussed be-
low. The outer loop is terminated either if a maximum number
of iterations I is reached, or if the decrease in the objective
function of (P) is smaller than a predefined threshold.

The individual sub-problems to be solved in each phase
correspond to the following convex `1-norm and `2-norm reg-
ularized probit regression problems:

arg min
wi :Wi,k≥0 ∀k

−
∑
j: (i,j)∈Ωobs

log p(Yi,j |wi, cj) + λ‖wi‖1,

arg min
cj

−
∑
i: (i,j)∈Ωobs

log p(Yi,j |wi, cj) + γ
2 ‖cj‖

2
2 .

In contrast to logistic regression, the second derivative of the
probit log-likelihood function inhibits efficient evaluation1.

1This fact inhibits the use of iteratively reweighted second-order algo-
rithms [20]. Note that our probit-based LA model can easily be adjusted to a
logit-based model, which we do not discuss here due to space limitations.
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Fig. 1. Performance comparison (SPARFA-M and K-SVD+).

Consequently, we develop two novel first-order methods that
efficiently solve these regularized probit regression subprob-
lems, by building on the fast iterative soft-thresholding algo-
rithm (FISTA) [21]. Both algorithms iteratively perform a
gradient step on the log-likelihood terms followed by a prox-
imal mapping step with respect to the regularization terms,
which form the inner loop of SPARFA-M.

While SPARFA-M reduces the objective function over the
iterations, it does not necessarily converge to a global opti-
mum due to its bi-convex nature. Nevertheless, using recent
results in [22], we have established the following global con-
vergence guarantee of SPARFA-M from any arbitrary starting
point to a local optimum. Details can be found in [23].

Theorem 1 (Global convergence of SPARFA-M) From any
starting point, SPARFA-M converges to a critical point of (P).
Moreover, if the starting point is within a close neighborhood
of a global optimum of (P), then SPARFA-M converges to this
global optimum.

5. EXPERIMENTS

5.1. Synthetic data

We start by evaluating the performance of SPARFA-M using
synthetic test data. To arrive at a fair comparison, we use a
non-negative variant of the K-SVD algorithm [24], referred
to as K-SVD+, as a base-line. For K-SVD+, we use a non-
negative variant of orthogonal matching pursuit [25] in the
sparse-coding step; in the dictionary update stage we impose
non-negativity in W as in [26, Fig. 4]. We provide K-SVD+

with the true number of non-zero elements for each wi, which
clearly favors this algorithm over SPARFA-M.

In all synthetic experiments, we estimate Ŵ, “C, and µ̂
of the true parameters W, C, and µ. Since factor analysis
is susceptible to permutations and scaling in W and C, we
normalize each row of C, “C and each column of W and Ŵ
to unit `2-norm. We then permute the columns of Ŵ and“C to match best with the ground truth and use the following
performance metrics:

EW =
‖W−Ŵ‖2F
‖W‖2F

, EC =
‖C−“C‖2F
‖C‖2F

, Eµ =
‖µ−µ̂‖22
‖µ‖22

,

We generate synthetic data as follows: Set K = 5 for all
trials. For each trial we generate Ci,j ,µi ∼ N (0, 1). For W
we choose the number of active concepts per row in {1, 2, 3}
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Fig. 2. Question–concept association graph extracted by
SPARFA-M on an undergraduate DSP course. Circles cor-
respond to latent concepts. Squares correspond to questions
with the numerical label denoting the intrinsic difficulty.

Concept 1 Concept 2

Frequency response (46%) CTFT (40%)
Sampling rate (23%) Laplace transform (36%)
Aliasing (21%) DTFT (24%)

Concept 3 Concept 4

Z-transform (66%) CTFT (43%)
Pole/zero plot (22%) Systems/circuits (31%)
Laplace transform (12%) Transfer function (26%)

Concept 5

Impulse response (74%)
Transfer function (15%)
DTFT (11%)

Table 1. Three most important tags and relative
weights for the recovered concepts.

with equal probability. Non-zero entries in W are generated
from the exponential distribution with rate parameter 2/3.
The sparsity regularization parameter λ for SPARFA-M is se-
lected according to Bayesian information criterion (BIC) [20].

We first consider the impact of problem size on estima-
tion error. To this end, we fix N = 100 and sweep Q ∈
{50, 100, 200} for K = 5 concepts. We retrieve parameter
estimates for both algorithms and compute performance using
metrics. The results we show are averaged over 25 Monte-
Carlo trials. Box-and-Whisker plots of the estimation error
for each algorithm are shown in Fig. 1. We observe that the
performance error metrics decrease as the problem size in-
creases. SPARFA-M has superior performance to K-SVD+

in all cases, despite the fact that K-SVD+ is provided with
the oracle sparsity level of each question.

5.2. Real-world data

We analyze a small database consisting of 15 learners answer-
ing 44 questions taken from the final exam of an introductory
course on digital signal processing (DSP).

We estimate W, C, and µ from the fully-populated 44×
15 binary-valued matrix Y using SPARFA-M assuming K =
5 concepts to prevent over-fitting. In practice, it is crucial
to identify the meaning of each concept. The proposed LA
framework enables us to infer this information. To this end,
we make use of 12 user-defined tags that were assigned man-
ually to each question by the instructor. We note that this
incorporation of tags is not necessary for SPARFA-M but is
done to provide additional interpretability to the estimates
provided by SPARFA-M. We form a sparse 44×12 matrix T,
where the columns correspond to each of the 12 pre-defined
tags, and we set a 1 at the locations where a tag is present
in a given question (and set 0 otherwise). We postulate that
the learned question concept association matrix W can be
further decomposed as W = TA, where A is a 12 × 5

sparse non-negative matrix representing the tags-to-concept
mapping. This assumption enables us to extract A using `1-
norm regularized least-squares [27]. From A, we can now
associate tags with concepts. In the bipartite graph shown
in Fig. 2, circles represent concepts, while squares represent
questions (along with their intrinsic difficulty µi). Connect-
ing lines indicate whether a concept is present in a question
with thick, dark lines representing stronger question–concept
associations. Tbl. 1 lists the three most important tags and the
proportions they contribute to each concept, by examining the
magnitude of non-zero entries in A.

Note that there are some questions that are not linked to
any concept. Here, all 15 learners answer these questions cor-
rectly, and so nothing can be inferred about the underlying
concept structure of these questions.

6. CONCLUSIONS

We have proposed a sparse probit factor analysis framework
for learning analytics (LA). Our approach enables joint recov-
ery of question–concept associations, question intrinsic dif-
ficulties as well as learner concept knowledge profile from
binary graded learner response data. The estimated question–
concept association can be used to visualize the knowledge
base structure in a given course or assessment. Together with
the estimated question intrinsic difficulties, they enable an
ITS to provide feedback to course instructors to identify off-
topic or ill-posed questions. The estimated learner concept
knowledge also enables an ITS to provide feedback to stu-
dents about their learning progress. Leveraging this informa-
tion, an ITS is able to make personalized recommendations
to learners, e.g., recommending remedial material to learn-
ers who have not demonstrated sufficient concept knowledge,
or providing new material to learners who have. This per-
sonalized approach to education has the potential to greatly
enhance learning efficiency and reduce instructor workload.
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