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ABSTRACT 

New sensor technologies such as Fabry-Pérot interferometers (FPI) 

offer low-cost and portable alternatives to traditional infrared 

absorption spectroscopy for chemical analysis. However, with FPIs 

the absorption spectrum has to be measured one wavelength at a 

time. In this work, we propose an active-sensing framework to 

select a subset of wavelengths that best separates the specific 

components of a chemical mixture. Compared to passive feature-

selection approaches, in which the subset is selected offline, active 

sensing selects the next feature on-the-fly based on previous 

measurements so as to reduce uncertainty. We propose a novel 

multi-modal non-negative least squares method (MM-NNLS) to 

solve the underlying linear system, which has multiple near-

optimal solutions. We tested the framework on mixture problems 

of up to 10 components from a library of 100 chemicals. MM-

NNLS can solve complex mixtures using only a small number of 

measurements, and outperforms passive approaches in terms of 

sensing efficiency and stability. 

Index Terms—Active sensing, tunable sensors, multi-modal 

optimization, chemical mixture analysis. 

1 INTRODUCTION 

Infrared (IR) spectrometry and wavelength-selection algorithms 

have been widely used for chemical identification and quantitative 

analysis [1]. New technologies such as Fabry–Pérot interferometry 

(FPI) offer low-cost and more portable options [2]. However, 

unlike traditional techniques such as Fourier Transform Infrared 

Spectroscopy (FTIR), which can measure the complete absorption 

spectrum with thousands of spectral lines within a second , FPI 

devices can only measure one spectral line at a time. Thus, 

obtaining the whole spectrum with FPIs is time consuming because 

it requires scanning all wavelengths. Doing so is also unnecessary: 

since every chemical has its own spectrum signature, only a subset 

of the spectral lines is needed to identify each particular sample. 

Thus, by extracting only the signature components of the spectrum, 

we can significantly shorten the sensing process and reduce 

computational complexity without sacrificing much accuracy.  

Conventional approaches such as feature-selection [3, 4] can 

be used to identify a handful of relevant wavelengths. These 

approaches can be considered ―passive‖ since the selected features 

are obtained offline to maximize discrimination among all 

chemicals in the library. As such, passive wavelength selection 

approaches have two major drawbacks.  First, finding the optimal 

feature subset is computationally intense and, in the case of 

mixture analysis, infeasible since the number of possible mixtures 

grows factorially with the size of the chemical library. Second, 

finding a feature subset that discriminates among all chemicals is 

inefficient since some of the chemicals in the library can be easily 

excluded with a handful of observations.  

Given these drawbacks, this paper presents an ―active‖ 

approach to wavelength selection in chemical mixture analysis. In 

active sensing, features are selected sequentially based on 

information obtained from all previous measurement. Each new 

measurement either solves the problem or helps rule out unfeasible 

solutions and thus reduce the searching space for the next sensing 

step. For tunable sensors such as FPI devices, which acquire 

information sequentially, this active-sensing approach is a more 

efficient solution, computationally and time-wise.  

2 RELATED WORK  

Active perception has had a long history in computer vision [5] and 

robotics [6, 7]. However, only a handful of groups have applied 

these ideas in the domain of chemical sensing and machine 

olfaction. In one of the earliest studies, Nakamoto et al. [8] 

developed an algorithm for active odor blending, where the goal 

was to reproduce an odor blend by creating a mixture from its 

individual components. The algorithm adjusted the mixture ratio so 

that the response of a gas-sensor array to the mixture matched the 

response to the odor blend. Priebe et al. [9] developed a statistical 

pattern-recognition method for active sensing. The approach builds 

a decision tree to partition feature space in a hierarchical fashion: 

nodes close to the root select features that can cluster examples 

regardless of class labels, whereas nodes at the leaves select 

features that discriminate examples from different classes. The 

authors showed that the approach can reduce misclassification 

rates by half, while requiring only 20% of the features to make any 

individual classification.  Dinakarababu et al. [10] proposed an 

adaptive device that uses a digital micro-mirror as a tunable 

spectral filter to multiplex certain spectral bands. The system thus 

measures the projection of the spectral density onto a set of basis 

vectors, rather than measuring each spectral line directly. The basis 

vector changes over time based on previous information to 

maximize discrimination of different chemicals.  

Contribution and relation to prior work: Over the last few 

years, we have applied active sensing principles to various 

chemical identification and estimation problems. In an initial study 

[11], we developed an active classification method to identify 

individual chemicals at fixed concentration using metal-oxide 

sensors.  Later, we reformulated the active-sensing approach to be 

able to identify single chemicals as well as their concentrations 

using an FPI device [12].  In this paper, we address a more 

challenging problem of identifying multiple components in a 

chemical mixture and their respective concentrations. To solve this 

problem, we take advantage of Beer’s law , which states that IR 

absorption is linear in concentration and mixture components. If 

the complete IR spectrum was available, the linear problem could 

be solved using non-negative least squares. However, with active 

sensing the problem becomes significantly more challenging.  

First, with active sensing the number of wavelengths measured is 
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generally much smaller than the number of chemicals in the 

library; as a result, the linear system is under-determined. Second, 

the number of chemical mixture combinations grows factorially 

with the number of chemicals in the library, so it is 

computationally impractical to evaluate all the solutions. To 

overcome these difficulties, this paper proposes a multi-modal1 

non-negative least squares (MM-NNLS) method with sparsity 

regularization constraints. Instead of trying to test all the possible 

solutions, the MM-NNLS generates multiple sparse solutions. 

Providing alternative solutions not only offers users flexibility as a 

solver, but also guides the feature-selection process towards 

wavelengths that can further tell apart these multiple alternative 

solutions.  

3 METHODS 

3.1 Problem statement 

Consider the problem of quantifying a gas sample containing a 

mixture of chemicals from a library   {           
} with    

distinct chemicals. Each chemical    in the library is characterized 

by a spectrum    [  
    

      
 ]

 
 representing the IR absorption 

at   distinct wavelengths    {          } . Thus, we can 

represent this library as a      column matrix  , where each 

column represents the absorption spectrum    of the corresponding 

chemical    :       
    

      
 . According to Beer’s law, the 

measured IR absorbance is linear to its concentration. Therefore, 

the absorption spectrum of the chemical mixture can be 

represented as an     column vector      where   is an 

      column vector with each element being the concentration 

of each chemical in the library. Because the measurements 

represent absorption, all the elements in the matrix  , observation 

  and concentration   should be non-negative. Denoting by   the 

sensor noise, the problem is to solve the linear system: 

           (1) 

In active sensing, though, we can only measure one 

wavelength at a time. As a result, the entire matrix   is not 

available but only the rows for those wavelengths that have been 

measured. Denote by   {   
    

      
}   the set of measured 

wavelengths, where    
 is the    

-th wavelength in the spectrum at 

sensing step  . Then, using Matlab notation2 the actual matrix   

becomes         :), and the actual sensor observation 

becomes        ) . Starting from an empty matrix (zero 

observations),   grows by adding one row at a time, as each new 

wavelength is measured. The goal is to find a sequence of 

features   , and use the corresponding observation    ) and the 

spectral library      )  to estimate the mixture components and 

their concentration  .  

3.2 Proposed solution 

Because the system is underdetermined (there are far more 

chemicals in the library than measured wavelengths), we prevent 

overfitting by imposing a sparsity constraint on the solution . 

Namely, we seek to minimize the number of non-zero elements 

in   while satisfying the equality constraint        

                                                                 
1 In this work, the term multi-modal refers to the fact that the 

optimization can generate multiple solutions (multiple modes); 

refer to [13]  for a review of multi-modal optimization techniques.  
2  In Matlab notation, the expression      )  denotes the i-th 

column of A, whereas      ) denotes the j-th column of A. 

   
  

                   )     )         (2) 

 
Fig. 1. Building blocks of the active sensing framework 

To solve this minimization problem, our method operates in a 

two-phase cycle. In the first phase, we make a measurement at a 

particular wavelength (step 1) and combine it with all previous 

measurements to solve the underlying linear system in eq. (2) (step 

2).  Because this linear system generally contains multiple near-

optimal solutions, we use a solver that can generate multiple 

possible solutions { ̂   ̂   }.  In the second phase, we project 

each of these solutions back to observation space (step 3), and then 

identify the wavelength that can best distinguish among these 

projected observations (step 4).  As shown in Fig. 1, the whole 

process can be illustrated as a closed-loop control system. 

Step 1: Sensing. In the first step, the algorithm takes a new 

measurement. In the absence of prior knowledge about the mixture, 

we randomly select the initial wavelength to start the sensing 

process. Assuming that the sensor signal is contaminated with 

additive Gaussian noise (of equal variance across wavelengths) we 

obtain observation   : 

                      ) (3) 

Step 2: multi-modal non-linear least squares (MM-NNLS). 

After making each new observation, we solve the linear system in 

eq. (2).  Since conventional NNLS solvers generate only one 

solution, we propose a new multi-modal non-negative least squares 

(MM-NNLS) that is capable of generating multiple near-optimal 

solutions, each having a unique combination of non-zero elements. 

This allows us to explore several promising regions in parallel and 

avoids early convergence to a sub-optimal solution. 

MM-NLS maintains a queue of the best    candidate solutions 

found so far, sorted by their projected    norm error |   ̂    |
 

 
.  

For each of these candidates, MM-NNLS expands it to the         

directions of highest directional gradient; this ensures the solutions 

remain sparse because only one chemical is added to the solution at 

a time.  The pseudo code of the algorithm is described in Table 1. 

The algorithm consists of an outer loop and an inner loop. The 

outer loop runs the heuristic search, which explores the candidates 

incrementally. The inner loop (sub-procedure NNLS_Step) 

performs a local searching using a simplex3-style NNLS solver 

                                                                 
3 The simplex algorithm searches the solution on the vertices of 

a polytope that models the underlying linear problem. 

Projection 
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(see [14]; pp. 160). Unlike the conventional simplex algorithm, 

which uses a swapping operation to locate the extreme points, our 

approach uses the pseudo-inverse solution for exact line searching, 

and then projects the solution (if unfeasible) back to the polytope. 

 

 

Step 3: Projection. The MM-NNLS algorithm generates multiple 

solutions  ̂  { ̂     ̂  
} , each solution   ̂  consisting of the 

estimated concentration for each chemical in the library . Since the 

ground truth   is unknown, the goodness of each solution can only 

be measured in observation space. For this reason, we project each 

solution  ̂  back to observation space: 

 ̂  { ̂  | ̂    ̂          } (4) 

.Step 4: Feature selection. In a final step, we select the 

wavelength that provides maximum discrimination among these 

projected spectra  ̂. In prior work [12],  we used Bayes Risk to 

measure the information content of each feature. To reduce 

computational complexity, in this work we use a more efficient 

measure: the variance of each wavelength across the    projected 

spectra of all candidate solutions. The higher the variance, the 

better that wavelength can further discriminate among all candidate 

solutions  ̂. 

        
  

{   (      )   ̂)} (5) 

4 EXPERIMENTAL RESULTS 

We validated the active sensing algorithm on a dataset of IR 

spectra from the NIST WebBook library [15], which contains high 

resolution FTIR spectra in the range        . From this dataset, 

we randomly picked 100 spectra with resolution higher than 1,000 

spectral lines over the full spectral range. To simulate the 

resolution of the FPI sensor, we downsampled and interpolated 

these spectra to 660 spectral lines over the range           and 

normalize them so that sum all each spectrum is 1. We also added 

Gaussian noise on the spectra with a fixed standard deviation of 

       or about 2% of the average absorption across all 

chemicals in the spectral library. Given that we assume the mixture 

is sparse, we only simulate mixtures of at most 10 chemicals.  

First, we illustrate the active sensing process on a problem 

where the target is a mixture of three chemicals. We set parameters 

      (queue size) and             (fan out), so the 

algorithm considers a maximum of 3,000 candidate solutions at 

each step. The sequence of sensing actions chosen by the algorithm 

is shown in Fig. 3(a). Due to space limit, we only show four steps 

of the process (from step 5 to step 8). It actually takes 10 

measurements to correctly identify the chemical. As shown in the 

figure, the active sensing algorithm identifies unique spectral peaks 

in the unknown sample. Fig. 2(b) shows the    norm error of the 

candidate solutions at each step; the correct solution is not found 

until step 6 (red vertical line), it appears in the ranking, and its rank 

 
Fig. 2 Test case for the active sensing framework. (a) Wavelength selected at each step in the process (red bars), previous 

measurements (blue circle), projected spectra (green) and ground truth (blue). (b) Error ranking of all candidate solutions; the red vertical 
line marks the ranking of the correct solution. 

Table 1: PSEUDO CODE FOR MM-NNLS 

        {
  

 

  
 
   

           }       )     

procedure Q = MM_NNLS(A, b, MaxIter) 

Initialization: 

- Initialize solution to            
- Create initial queue of solutions     

- Add initial solution to   {  } 

for                 

- Calculate    norm error for all candidates 

-    {  |      |
 

 
      } 

- Stop no improvement:  
- if       )          )⁄   ; return; endif 

- Sort   in ascending order (lowest error 

 first) 
- Explore the first    candidates in    

for j = 1 :    

                   ) 

endfor 

- Add all new solutions to the queue   

endfor 

 

sub-procedure   = NNLS_Step       ) 

- Compute gradient            ) 
- Let    be the index of non-zero entries in    

- Sort    in decreasing order                  
- Explore best         directions to the corners 

for i = 1 :         

- Add component corresponding to    ,         
- Compute pseudo-inverse solution         )

   

if             (solution is not feasible) 

Project the solution back to the polytope:  

else     ; endif 

endfor 

- Collect all the solutions:  [           
] 
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progressively improves as more and more features are measured, 

until it reaches the top of the queue. 

Having illustrated the active sensing process on a case study, 

we now put the framework under a more complete test. For 

comparison purposes, we use a passive approach –Sequential 

Forward Selection (SFS)[16] as a baseline. We train SFS using the 

same evaluation function: variance of the projected spectra at each 

wavelength. Since it is unfeasible to enumerate all possible 

mixtures (     ), we train SFS to maximize discrimination among 

the 100 individual chemicals. To ensure a fair comparison, we use 

the same stopping criteria for both algorithms: the sensing process 

stop once the projected   error on the whole spectrum (|    

  |
 

 
) is smaller than a certain threshold (    ); this large threshold 

value was chosen to ensure both methods converge in all the trials. 

We compared both methods on chemical mixture problems 

from 1 to 10 components. We randomly selected the components, 

and, for fair comparison, test both approaches on the same mixture. 

We run this trial 100 times on mixtures with same number of 

components. So there are 100x10 times trails in total. Each trial the 

components of the mixture are randomly selected again. Results 

are shown in Fig. 3(a).  With the exception of small mixtures (1-2 

components), where SFS outperforms active sensing by a small 

margin (1.5 measurements), active sensing converges to the 

optimal solution with fewer measurements than SFS. 

The number of components is not the only determinant of the 

complexity of a solution: the mixture itself could be ill-

conditioned, i.e. there exist multiple near-optimal solutions that can 

approximate the target spectrum well. Denoting by    the index of 

the components in the solution, we measure its complexity as the 

condition number4 of matrix       ).  Since condition number is a 

continuous measure, we can plot out all the solutions found by 

either method. Fig. 3(b) shows the condition number vs. the 

number of measurement required. For a given number of 

measurements, the condition number for the MM-NNLS solutions 

is much lower than that for SFS.  Likewise, for a given condition 

number, MM-NNLS finds the optimal solution with fewer 

measurements than SFS.  These results indicate that MM-NNLS 

provide solutions that are numerically more stable than those 

provided by SFS.  

                                                                 
4 Large condition numbers indicate unstable solutions.  

5 DISCUSSION  

In this paper, we have presented an active sensing framework for 

the problem of estimating the components of a chemical mixture 

using tunable IR sensors (Fabry-Pérot interferometers). This 

represents a challenging computational problem not only because 

the possible solutions are combinatorial but also because the 

underlying linear system is normally ill-conditioned: chemical 

components in a spectral library are notoriously correlated with 

each other.  As an example, Lo et al. [17] showed that a library 

with 3,169 chemicals can be compressed down to 12% of its size.  

To condition the problem, our approach assumes that the 

solutions are sparse, i.e. among all the possible solutions; we only 

consider those containing a few components. Sparse linear least 

squares methods have been extensively used in the compressive 

sensing community. The most common solver is the    regularized 

(such as   -magic [18]) or directly    regularized (such as [19]) 

linear least squares method based on convex optimization. These 

approaches, however, only generate one solution. To acquire 

multiple solutions, a general solution is provided by memetic 

algorithms;  see [20] for a detailed review.  A memetic algorithm 

randomly assigns multiple seeds and lets them converge to local 

optima using convex optimization. However, combining memetic 

algorithms with convex optimization to obtain multiple near-

optimal solutions is non-trivial. First, convex-optimization 

techniques provide very limited control (through scaling and the 

smoothing parameters) of where the algorithm can converge to, so 

it is hard to seed the algorithm properly and efficiently. Second, 

convex optimization techniques are in general computationally 

expensive, to where seeding and running multiple searching can 

become prohibitively slow. The multi-modal non-negative least 

squares (MM-NNLS) method proposed in this paper addresses 

these issues.  First, we replace the convex optimization stage with 

an NNLS solver [14] that has the efficiency of the simplex 

algorithm. And second, we replace the random seeding strategy of 

memetic algorithms with a heuristic search that increases the 

complexity of the solution one component at a time. Hence, MM-

NNLS takes advantage of the computational efficiency of simplex-

based NNLS solvers and combines it with a parallel heuristic 

search to generate multiple close-to-optimal solutions. 

Our current implementation of the MM-NNLS solver provides 

no control over the diversity of the generated solutions. When 

solutions become very close to each other, they project to 

extremely similar spectra. As a result, these projections offer very 

little information to guide feature selection. In these cases, many of 

these solutions can be clustered into a few meaningful 

representatives. One way to address this issue is to introduce 

diversity metrics (e.g., distances between solutions) into the 

heuristic search. Encouraging diversity can also improve speed 

because it prevents the algorithm from having evaluate loads of 

similar solutions.  

Finally, work in our group is underway to validate the MM-

NNLS algorithm on real chemical mixture problems with FPI-

based sensors. Though we have achieved promising experimental 

results on single-chemical problems [12], most chemical stimuli in 

the real world are mixtures, so the proposed framework for active 

multicomponent analysis would significantly expand the 

applications of FPI devices. 
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(a) (b) 

Fig. 3. (a) Number of nonzero components in the mixture vs. 

number of measurements acquired to identify the mixture. The 

blue and red centerlines are the average number of measurements 

for passive and active approach, respectively; the shadow bands 

are their respective spreads. (b) Condition number vs. number of 

observation acquired to identify the chemical. 
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