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ABSTRACT

We propose a sparse modal estimation approach for analyz-

ing 2-D NMR signals. It consists in decomposing the 2-D

problem into two 1-D modal estimations. Each 1-D problem

is formulated in terms of simultaneous sparse approximation

which is efficiently solved using the Simultaneous Orthogonal

Matching Pursuit method associated with a multi-grid dictio-

nary refinement. Then, we propose a new criterion for mode

pairing which comes down to solve a sparse approximation

problem involving a low dimensional dictionary. The effec-

tiveness of the method is demonstrated on real NMR data.

Index Terms— Modal retrieval, sparse approximation,

multi-grid, 2-D NMR

1. INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is a pow-

erful tool for the determination of chemical structures and

molecular interactions [1]. The multidimensional (R-D)

NMR spectroscopy enables the detection and interpretation

of interactions that are impossible to analyze along a single

dimension which makes it essential for the study of macro-

molecular structures [2]. Data provided by the spectroscope

are signals corresponding to the relaxation of the nuclear

magnetization; these signals can be modeled by a superposi-

tion of damped complex sinusoids. The problem consists in

the determination of the multidimensional signal frequencies

and decaying rates. In this paper, we focus on 2-D signals.

This is a classical problem in signal processing and sev-

eral modal retrieval approaches have been already proposed

for 2-D signal parameters estimation. For example, we can

cite subspace- and linear prediction-based approaches such

as TLS-Prony [3], matrix enhancement and matrix pencil

(MEMP) [4], 2-D ESPRIT [5], improved multidimensional

folding (IMDF) [6], etc. Some of these methods (TLS-Prony

and MEMP) separately estimate the modes (including fre-

quencies and damping factors) of each dimension and then

use matching algorithms in order to form the pairs of modes.

The matching criterion used in MEMP fails in presence of

identical modes in one or more dimensions. To overcome this

problem, other methods perform a joint diagonalization of

two matrices by introducing a weighting parameter [5, 7] to

avoid rank deficiency. For all these methods, it is necessary

to select a priori the correct number of modes that have to

be estimated. This information is often not available in real

applications such as in NMR spectroscopy. Recently, meth-

ods based on sparse approximations have been proposed to

address the harmonic or modal retrieval problem [8, 9, 10].

Most of these methods are intended for 1-D signals. They

share the advantage that their use does not require neces-

sarily prior knowledge of the number of modes, but their

performances depend on a good grid selection allowing the

construction of the dictionary [11]. Clearly, to achieve a good

resolution, it is necessary to select a fine grid of frequencies

and damping factors leading to a large dictionary. This com-

plexity is further increased in the case of 2-D signals in which

we are confronted with 2-D grids. We have recently pro-

posed a multi-grid sparse approximation method [12] where

the estimation is started with a coarse grid which is then

iteratively refined by inserting new grid points leading to a

multiresolution-like scheme. For 1-D signals, this method

allows achieving a good resolution while maintaining rea-

sonable the dictionary size. However, for large 2-D NMR

signals, this is often not sufficient. To deal with such signals,

we propose here a 2-D sparse estimation method based on

two main steps. In the first step, the method estimates the

modes separately in each dimension by using the simultane-

ous sparse approximation principle [13] combined with the

multi-grid approach. Then, in the second step, the estimated

modes are paired. The new pairing procedure also calls for

the resolution of a sparse approximation problem where the

dictionary is built from the estimated 1-D modes and hence

only includes few columns. Consequently, the computa-

tional complexity of the multi-grid approach is significantly

reduced, which allows its application to spectroscopy signals.

The remainder of this paper is organized as follows. In

section 2, we present the problem statement and the formula-

tion of the 2-D modal estimation problem as two simultane-

ous sparse estimation problems followed by a new procedure

for pairing 2-D modes. The effectiveness of the proposed

method is demonstrated using simulation and experimental

signals in sections 3 and 4 respectively.
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2. SIMULTANEOUS SPARSE APPROXIMATION

FOR 2-D MODAL SIGNALS

2.1. Signal model and data filtering

The classical model for 2-D NMR signals is the superposition

of 2-D exponentially decaying sinusoids in noise. In symbols:

ỹ(m1,m2) =

F
∑

i=1

cia
m1−1
i bm2−1

i + e(m1,m2) (1)

for m1 = 1, . . . ,M1 and m2 = 1, . . . ,M2, where ai =
e−αa,i+j2πfa,i are the modes of the first dimension and

bi = e−αb,i+j2πfb,i are those of the second dimension.

{αa,i, αb,i}
F
i=1 are damping factors, {fa,i, fb,i}

F
i=1 are fre-

quencies and {ci}
F
i=1 are complex amplitudes; e(m1,m2) is

an additif noise. The problem is to estimate the set of param-

eters {ai, bi, ci}
F
i=1 from the observed signal ỹ(m1,m2). In

this paper, the tilde symbol (˜) denotes a noisy signal.

Let Y be the noise-free data matrix containing the sam-

ples y(m1,m2). Then, Y may be written as:

Y = [y1,y2, · · · ,yM2
]

=

[

F
∑

i=1

ciai
F
∑

i=1

cibiai · · ·
F
∑

i=1

cib
M2−1
i ai

]

(2)

where ai = [1, ai, . . . , a
M1−1
i ]T . By putting c′i(m2) =

cib
m2−1
i , the columns ym2

of Y can be considered as mul-

tiple experiences involving the same signal generated by the

modes ai, i = 1, . . . , F, but with different amplitudes for

each experience. Then, the noisy matrix Ỹ can be written as:

Ỹ = AH+E (3)

where A is a Vandermonde matrix whose columns are

{ai}
F
i=1, H is a F × M2 matrix with entries c′i(m2), and

E is the matrix formed with e(m1,m2). To reduce the noise

influence, we follow [9] by replacing Ỹ by its SVD-based

low rank approximation Y̆.

2.2. Simultaneous sparse estimation

From (2), it is easy to see that the modes {ai} can be ob-

tained from any column of Y. Similarly, these modes may

be estimated from any column of the filtered matrix Y̆ but,

in order to reduce the estimation variance, we will use all the

columns. Hence, for each column y̆m2
,m2 = 1, . . . ,M2,

the modal estimation problem can be formulated as a sparse

approximation which is solution of the following constrained

optimization problem:

xm2
= min

x
‖x‖0 subject to ‖y̆m2

−Qax‖
2
2 ≤ ǫ (4)

where Qa is a modal dictionary and x is a (sparse) vector

containing the coefficients of the activated columns in Qa,

the latter being estimates of signals ai. The dictionary Qa

can be defined as follows. Let αmax be an upper bound on

{αa,i}
F
i=1 and let P the number of points of a uniform grid

covering the damping factor interval [0, αmax]. Similarly, let

K be the number of points of a uniform grid covering the

frequency interval [0, 1[. Then Qa is given by

Qa = [q(0, 0), . . . ,q(0, (K − 1)δf),q(δα, 0), . . . ,

q(δα,(K − 1)δf ), . . . ,q((P − 1)δα, (K − 1)δf )] (5)

where q(α, f) = a(α, f)/||a(α, f)||2 with a(α, f) =
[1, e(−α+j2πf), . . . , e(−α+j2πf)(M1−1)]T , δα = αmax/P ,

and δf = 1/K . In short, Qa is obtained from a discretiza-

tion of the (α, f) plane. Each point of the grid corresponds

to a hypothetic mode. The total number of columns of Qa

is N = KP ≫ F , each of them is called atom. The fact

that each vector y̆m2
corresponds to a 1-D signal generated

by the same modes implies that the positions of non-zero

coefficients should be the same in all sparse vectors xm2
,

m2 = 1, . . . ,M2. This property may be advantageously

exploited using simultaneous sparse estimation which is a

particular group sparsity approach. The main interest of the

simultaneous sparse estimation is to decrease the estimation

variance as compared to the independent resolution of (4)

for all values of m2. To do so, let X = [x1,x2, . . . ,xM2
],

then the sparsity of X may be measured by computing the

Euclidian norm of each row; those providing a non-zero norm

define the positions of the activated atoms in the dictionary

Qa. Therefore, we are facing a simultaneous sparse approxi-

mation problem:

min
X

‖X‖2,0 subject to ‖Y̆ −QaX‖2f ≤ ǫ (6)

where

‖Y̆ −QaX‖2f = ‖vec(Y̆ −QaX)‖22 (7)

‖X‖2,0 =
∥

∥

∥

[

‖X[1, :]‖2 · · · ‖X[N, :]‖2
]T

∥

∥

∥

0
(8)

and X[n, :] stands for the nth row of X. Several works have

been already presented to solve the simultaneous sparse ap-

proximation problem involving several signals. A survey of

these algorithms is presented in [14]. In this paper we use

the Simultaneous Orthogonal Matching Pursuit method (S-

OMP) [13]. Once the modes corresponding to the first di-

mension (ai) are estimated, those of the second one (bk) are

obtained in the same manner by processing the matrix ỸT

and using a dictionaryQb. Finally, ai and bk have to be paired

to form the 2-D modes. This is addressed in section 2.4 but,

before, to reach a good resolution, we propose to associate

to the simultaneous sparse approximation a multi-grid dictio-

nary refinement.

2.3. Multi-grid dictionary refinement

To achieve a high-resolution modal estimation, a possible

way is to define a high resolution dictionary often resulting
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Fig. 1. The multi-grid dictionary refinement. (◦) Dictionary

atoms. (•) Activated atoms.

in a prohibitive computational burden. Rather, we propose

to start with a coarse one (N low) and to adaptively refine it

through a multi-grid scheme. This principle proposed in [12]

is sketched on figure 1. The main idea is the adaptation of

the dictionary as a function of the previous dictionary and

the estimated coefficients. Let l be the current grid level

(l = 0, . . . , L − 1). At level l, we first restore the signal

X(l) related to the dictionary Q(l) by applying the S-OMP

method, where Q(l) relates to either Qa or Qb at level l.
Then we refine the dictionary by inserting atoms in between

pairs of Q(l), in the neighborhood of each activated atom

while removing the non-active ones and we apply again the

S-OMP method at level l + 1 to restore X(l+1) with respect

to the refined dictionary Q(l+1). Thus we refine iteratively

the dictionary until the maximum level l = L− 1 is reached.

2.4. 2-D modes pairing

The 2-D signal model (1) can be rewritten as:

ỹ = (A⊙B)c+ e (9)

where ỹ = vec(ỸT ), A ∈ CM1×F and B ∈ CM2×F are

Vandermonde matrices whose columns are ai and bk, respec-

tively. The vector c = [c1, . . . , cF ]
T gathers the 2-D mode

amplitudes and ⊙ stands for the Khatri-Rao product. The

method we propose here for pairing of 2-D modes consists

in exploiting the sparse approximation principle for R-D sig-

nals [12]. We denote by Fa and Fb the number of estimated

modes âi and b̂k, respectively. We define the two dictionaries

Q̂a and Q̂b as follows:

Q̂a = [â1, â2, . . . , âFa
] (10)

Q̂b = [b̂1, b̂2, . . . , b̂Fb
] (11)

where âi = [1, âi, . . . , â
M1−1
i ]T for i = 1, . . . , Fa and b̂k =

[1, b̂k, . . . , b̂
M2−1
k ]T for k = 1, . . . , Fb. Afterwards, using the

Kronecker product, we form the dictionary Q̂ defined by:

Q̂ = Q̂a ⊗ Q̂b. (12)

In order to select the pairs of 2-D modes present in y̆, we

solve the sparse problem

min
x

‖x‖0 subjet to ‖y̆ − Q̂x‖2 ≤ ǫ. (13)
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Fig. 2. Simulation result: root-mean square error of f1,1.

This problem is solved using a greedy method such as OMP

or SBR [15]. Note that this pairing algorithm is efficient even

in presence of identical modes in one or both dimensions.

3. ALGORITHM AND PERFORMANCES

The complete algorithm can be summarized as follows:

1. Perform the SVD of Ỹ and take its low rank approxi-

mation Y̆.
2. Apply the multi-grid algorithm combined with S-OMP

on matrix Y̆ to obtain the modes ai (first dimension).
3. Repeat step 2 using Y̆T to estimate the modes bi (sec-

ond dimension).
4. Form the 2-D modes using the pairing procedure.

The performances of the proposed method are assessed by

numerical simulations and compared to those obtained with 2-

D TLS-Prony and 2-D ESPRIT which is one of the most effi-

cient 2-D modal estimation approaches. The simulated signal

of size 30× 30 samples contains three modes:

(f1,1, α1,1; f1,2, α1,2) = (0.164, 0.080; 0.342, 0.075),
(f2,1, α2,1; f2,2, α2,2) = (0.310, 0.075; 0.110, 0.050),
(f3,1, α3,1; f3,2, α3,2) = (0.412, 0.050; 0.090, 0.243).

All the amplitudes are set to 1. We perform Monte Carlo sim-

ulations with different SNR levels. For the proposed method,

the initial grid used to build the dictionary is the same for

both dimensions; it contains 40 frequency points uniformly

distributed over the interval [0, 1[, and 4 damping factors α ∈
{0, 0.025, 0.05, 1}. We perform 30 levels of resolution for

each estimation. The RMSE of the frequency f1,1 is presented

in figure 2. We observe that the proposed method gives satis-

factory results since it reaches performance levels comparable

to that of 2-D ESPRIT, which are better than 2-D TLS-Prony

at low SNR. It is worth noticing that the proposed approach is

able to handle large 2-D signals; 2-D ESPRIT does not, which

precludes its use for large 2-D NMR data processing.
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Fig. 3. Results achieved by the proposed method in the spec-

tral region [−0.25, 0.25]× [−0.25, 0.25] of the experimental

2-D NMR signal using a sub-band decomposition. The num-

ber of estimated modes is indicated in each sub-band.

4. 2-D NMR SIGNAL ANALYSIS

The analyzed signal is of dimension 64 × 2024. Before

applying the multigrid approach combined with S-OMP al-

gorithm, we decompose the signal into sub-bands accord-

ing to the approach presented in [16]. We use the same

initial grid as before. The number of resolution levels is

set to 30. Figure 3 shows the final decomposition into

sub-bands of the 2-D NMR signal in the spectral range

[−0.25, 0.25]× [−0.25, 0.25] as well as the number of modes

estimated in each sub-band by the proposed method. The

results obtained in certain sub-bands are shown in figure 4

where the positions of estimated modes are indicated by cir-

cles. We observe that the proposed method performs well

in the case of close and/or aligned modes. Moreover, the

method proves to be competitive as compared to 2-D TLS-

Prony [17, 18] in terms of estimation accuracy and computa-

tional burden.

5. CONCLUSION

In this paper we proposed a sparse 2-D modal estimation ap-

proach suited to large 2-D NMR signals. The idea consists in

exploiting the simultaneous sparse approximation principle to

separate this joint estimation problem into two 1-D problems.

The modes are then coupled using a new algorithm which is

also based on the minimization of a sparse criterion. Finally,

tests performed on 2-D NMR signals showed the potential of

the sparse multi-grid methods. As a future work, this method

will be extended for multidimensional (R > 2) signals.
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Fig. 4. Results achieved in some sub-bands of the experi-

mental 2-D NMR signal. (◦) Estimated modes. (· · · ) Mode

coordinates.
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