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ABSTRACT
This paper deals with the reconstruction of relaxation time
distributions in Nuclear Magnetic Resonance (NMR) spec-
troscopy. This large scale and ill-posed inverse problem is
solved by the iterative minimization of a regularized objective
function allowing to encode some prior assumptions on the
sought distribution. The numerical optimization of the crite-
rion is performed using a primal-dual interior point algorithm
allowing to handle the non-negativity constraint. The perfor-
mances of the proposed approach are illustrated through the
processing of real data from a two-dimensional NMR experi-
ment.

Index Terms— T1-T2 relaxation times, Laplace trans-
form inversion, interior-point, primal-dual, preconditioning.

1. INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is a mea-
surement technique allowing to determine the molecular
structure and dynamics of a material. The NMR experiment
consists in analyzing the relaxation process which corre-
sponds to the re-establishment of the nuclear spin into its
equilibrium state, after the application of a short magnetic
pulse parameterized with a predefined flip angle Φ. This
process is decomposed into longitudinal and transversal dy-
namics, characterized by distributions of longitudinal, T1

and/or transversal, T2 relaxation times [1].
The reconstruction of a relaxation time distribution (T1,

T2 or T1-T2) corresponds to a numerical inversion of a
Laplace transform, which is known to be an ill-posed in-
verse problem [2]. Moreover, such a distribution should
satisfy the non-negativity constraint. In the context of NMR,
two inversion strategies arise in the literature, each of them
based on a specific criterion formulation and optimization
algorithm. The method from [3] adopts the algorithm of [4]
to minimize a Tikhonov-like criterion over the positive or-
thant. The size of the problem is artificially reduced by mean
of a pre-processing compression step on the data. In [5], we
proposed a truncated Newton optimization scheme with the

ability to treat the full acquired data. The positivity constraint
is implicitly handled through the use of a maximum entropy
penalization criterion. The main purpose of the present paper
is to propose a more general method, based on the use of
an original primal-dual interior point optimization method,
allowing to solve this large-scale inverse problem for any
convex and differentiable regularized objective function.

The rest of this paper is organized as follows: The T1,
T2 and T1-T2 acquisition models are presented in Section
2. Then, Section 3 presents our reconstruction method and
a strategy to reduce its computational cost in the case of T1-
T2 reconstruction. Section 4 illustrates the efficiency of the
proposed scheme through synthetic and real data examples.
Finally, some conclusions are drawn in Section 5.

2. ACQUISITION MODEL

2.1. One-dimensional NMR acquisition

Classical NMR experiments analyze the spin relaxation pro-
cess independently, either in terms of longitudinal or trans-
verse relaxation, leading to one dimensional (1D) measure-
ments x1(τ1) or x2(τ2). These 1D NMR data are related
to continuous distributions s1(T1) and s2(T2), also called T1

and T2 spectra, according to 1D Fredholm integrals of the first
kind [6]

xi(τi) =
∫∫

ki(τi, Ti)si(Ti)dTi, i = 1, 2, (1)

where k1 and k2 are kernels modeling the longitudinal and
transverse relaxations

k1(τ1, T1) = 1− γe−τ1/T1 ,
k2(τ2, T2) = e−τ2/T2 ,

(2)

with γ related to the flip angle according to γ = 1− cosΦ.
After sampling τi (resp. Ti) at mi (resp. Ni) discrete

values, (1) readsxi = Kisi, i = 1, 2, where yi ∈ R
mi , Ki ∈

R
mi×Ni and si ∈ R

Ni . 1D NMR reconstruction amounts to
the estimation of a positive spectrum si given yi = xi + ei,
with ei a noise term assumed white Gaussian, for i = 1 (i.e.,
T1 reconstruction) or i = 2 (i.e., T2 reconstruction).
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2.2. Two-dimensional NMR acquisition

Joint measurements with respect to the two relaxation param-
eters allow to build the two-dimensional (2D) S(T1, T2) dis-
tribution [7], from which the one dimensional distributions
can be deduced by si(Ti) =

∫

S(T1, T2)dTj 6=i, i = 1, 2.
The measured NMR data X(τ1, τ2) are then related to the

T1-T2 spectrum S(T1, T2), according to a 2D Fredholm inte-
gral of the first kind

X(τ1, τ2) =
∫∫

k1(τ1, T1)S(T1, T2)k2(τ2, T2)dT1dT2. (3)

Note that 1D acquisitions can be deduced from X(τ1, τ2) ac-
cording to the asymptotic relations:

x1(τ1) = X(τ1, τ2 → 0), x2(τ2) = X(τ1 → +∞, τ2). (4)

Experimental data consist of a series of discrete noisy samples
Y ∈ R

m1×m2 modeled by Y = K1SK
t
2 + E with S ∈

R
N1×N2 and E a noise term assumed white Gaussian. T1-T2

NMR reconstruction aims at estimating S given Y .

3. PROPOSED RECONSTRUCTION APPROACH

K1 and K2 are rank-deficient and very badly conditioned
matrices [4]. Therefore, direct inversion is numerically unsta-
ble in both 1D and 2D cases and regularized solutions must
be sought instead. In this paper, we propose a reconstruction
method based on a constrained and penalized least-squares
approach. The relaxation time distribution estimate is defined
as the solution of

min
s∈RN+

(

F (s) =
1

2
‖Ks− y‖22 + βR(s)

)

, (5)

where s := si, y := yi, K := Ki, N := Ni, i = 1
or 2, for the 1D model, and s := vect [S], y := vect [Y ],
K := K1 ⊗K2, N := N1N2, for the 2D model. The opera-
tor vect[·] corresponds to lexicographically reordering matrix
elements into a vector and ⊗ denotes the Kronecker product.
The penalization term R(·), whose weight is controlled by the
positive parameter β, is assumed differentiable and convex. In
order to handle the non-negativity constraint, an interior point
algorithm based on a primal-dual approach is adopted for the
resolution of (5).

3.1. Primal-dual interior point optimization

The primal-dual approach consists in jointly estimating s, and
the corresponding Lagrange multipliers λ through the resolu-
tion of a sequence of optimization problems obtained from
perturbed versions of the Karush-Kuhn-Tucker (KKT) opti-
mality conditions:

∇F (s)− λ = 0, Λs = µk, (s,λ) � 0, (6)

where Λ = Diag(λ) and µk = µk1, k ∈ N, is a sequence of
perturbation parameters converging to 0 when k tends to +∞.

At each iteration k of the primal-dual algorithm, an approxi-
mate solution (sk+1,λk+1) of (6) is calculated from one step
of a Newton algorithm coupled with a linesearch strategy [8,
Chap.11], according to:

(sk+1,λk+1) = (sk + αkd
s
k,λk + αkd

λ
k). (7)

The perturbation parameter µk+1 is then updated in order to
ensure the algorithm convergence.

Primal-dual directions

The directions (ds
k,d

λ
k) are obtained by solving,

[

∇2F (sk) −It

ΛkI Diag(sk)

] [

ds
k

dλ
k

]

=

[

λk −∇F (sk)
µk −Λksk

]

(8)

where ∇F (·) and ∇2F (·) are, respectively, the gradient and
the Hessian of criterionF (·), given in (5), and I is the identity
matrix of RN . Rather than solving directly this system, we
firstly perform the variable substitution [9],

dλ
k = Diag(sk)

−1 [µk −Λksk −Λkd
s
k] , (9)

and then calculate the primal direction ds
k from the reduced

system

Hkd
s
k = −gk, (10)

whereHk = ∇2F (sk)+Diag(sk)
−1

Λk and gk = ∇F (sk)−
Diag(sk)

−1µk.

Computation cost reduction in the 2D case

In the 2D reconstruction problem, matrix K is of size
m1m2 × N1N2. Typical values are m1 = 50, m2 = 5000,
N1 × N2 = 300 × 300, so K and Hk, are huge matrices
whose explicit handling is almost impossible. Consequently,
we propose here to overcome this difficulty by performing an
approximate resolution of (10) using a preconditioned con-
jugate gradient (PCG). The preconditioning strategy makes
use of the singular value decomposition K = UΣV t. Given
Ṽ and Σ̃, truncated versions of V and Σ, we define the
preconditioning matrix Pk such that

P−1

k = Ṽ Σ̃
2Ṽ t+βDiag

(

diag(∇2R(s))
)

+Diag(sk)
−1

Λk.

The PCG iterations are stopped when ([10])

‖gk +Hkd
s
k‖ 6 ηpcg‖gk‖, (11)

Furthermore, the computation costs for calculating F (sk),
∇F (sk) and the products of Pk and Hk with a vector, are
reduced by exploiting the factored form of the 2D observa-
tion model (more details can be found in [5, Sec.III.E]).
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Linesearch

The stepsize value αk is chosen so as to ensure the conver-
gence of the algorithm and the fulfillment of the inequalities
of the pertubed KKT system (6). A common strategy is to
require a sufficient decrease in a primal-dual merit function
Fµ(s,λ) along both primal and dual directions. Here, we re-
tain the merit function from [9]:

Fµ(s,λ) = F (s)− µ

N
∑

n=1

ln(λns
2
n) + λts. (12)

Moreover, in order to handle efficiently the vertical asymp-
totes in fµk

(α) = Fµk
(sk + αds

k,λk + αdλ
k), the majorize-

minimize (MM) linesearch strategy from [11], with J itera-
tions, J > 1, is employed to compute the stepsize.

Perturbation parameter update

The barrier parameter µk is controlled by two conditions [12]:
{

‖∇F (sk)− λk‖∞ 6 ηsµk,

‖Λksk − µk‖1/N 6 ηλµk,
(13)

where ηs and ηλ are positive parameters. As soon as (13) is
fulfilled, µk is updated using the µ-criticity rule which en-
sures the convergence of the primal-dual algorithm [13]:

µk+1 = θ(λt

ksk)/N, θ ∈ (0, 1). (14)

The iterative scheme (7) is run until the fulfillment of the fol-
lowing condition [8, Chap.11]

µk 6 µmin or (‖∇F (sk)− λk‖+ ‖Λksk‖) 6 η0. (15)

The main steps of the resulting method are summarized in
Algorithm 1, and the following settings are made:

J θ µ0 µmin ηs ηλ ηpcg η0
10 0.5 1 10−8 100 1.9 10−3 10−8

Initialize λ0 > 0 and s0 > 0

While ((15) is not satisfied) do
While ((13) is not satisfied) do

Calculate ds
k by solving the system (10)

Deduce dλ
k from (9)

Search αk by MM strategy
Update (sk+1,λk+1) according to (7)

done
Define µk+1 according to (14).

done

Algorithm 1: Primal-dual interior point algorithm.

4. EXPERIMENTAL RESULTS

We present in this section an illustration of the proposed ap-
proach through the processing of two datasets. The first one
is based on simulated data whereas the second dataset is ob-
tained from real 2D NMR measurements on an apple sample.

4.1. Synthetic dataset

The synthetic distribution So(T1, T2) is a mixture of two
Gaussian density functions located at {(0.5s, 0.5s), (2s, 1.5s)}
with standard deviations {(0.05s, 0.05s), (0.3s, 0.2s)} and
mixing probabilities 0.2 and 0.8, respectively. The first den-
sity is independent while the second presents a correlation
angle of 45◦ between T1 and T2 variables. The 2D data are
obtained according to the 2D observation model from Sec. 2,
with m1 = 50, m2 = 5000 and Φ = 90o. A white Gaussian
noise is added to get a signal to noise ratio (SNR) equal to 20
dB. We emphasize that these settings correspond to a realistic
situation. The simulated data are presented in Fig. 1.

The 2D spectrum is reconstructed by solving (5) using the
2D model with N1 = N2 = 300. The regularization term is
chosen as R(s) = ‖s‖22 and its weight is set to β = 100.
Both 1D spectra result from the resolution of (5), using the
1D model, the 1D data being deduced from the 2D ones using
(4). The same regularization strategy as in 2D is employed,
with β = 10−3. The reconstruction algorithm is implemented
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Fig. 1. Simulated T1-T2 distribution and measurements

T
2
 [s]

T
1 [s

]

Est. T1−T2 distribution

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0
1
2
3

T
1
 [s]

T1 and T2 distributions
Est. (−) vs Ref. (−−)  

0 0.5 1 1.5 2 2.5 3
0
1
2
3

T
2
 [s]

Fig. 2. Estimated T1-T2, T1 and T2 distributions using the
proposed approach. The relative reconstruction errors are, re-
spectively, 0.52, 0.231 and 0.16.
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on Matlab 2007b and the calculations are performed using a
MacbookPro having an Intel Core 2 Duo 2.4 GHz processor
and 4 GB of RAM (667 MHz). A positive uniform distri-
bution is employed as an initial guess. About 20 iterations
of Algorithm 1 are required to reconstruct the 1D distribu-
tions, for a computation time of about 1 second. For the 2D
case, the proposed algorithm reach the stopping criterion af-
ter 36 iterations and, in spite of the large scale of the problem,
the corresponding computation time is only 55 s. Both 1D
and 2D estimation results are shown in Fig. 2. It can be seen
that the locations of both Gaussian distributions are well re-
constructed. One can also observe, in Fig. 2, the similarity
between the 1D distributions obtained by 1D reconstruction
(straight line) and the true distributions (dashed line).

4.2. Real dataset

The second dataset is obtained from the analysis of a plant
matter sample (apple). Measurements are made for m1 = 50
values of τ1, non-uniformly spaced between 30 ms and 12s,
and m2 = 10000 echoes with a uniform time spacing of 800
µs between 600µs and 8s. The reconstruction is performed
for N1 = N2 = 300 values of T1 and T2, equally spaced
between 25 ms and 3 s, and a flip angle of 85o. Fig. 3 shows
the reconstructed 2D spectrum for β = 50, which is obtained
after 260 s for 61 iterations of Algorithm 1. Moreover, Fig. 3
presents the T1 (resp. T2) reconstruction, obtained for β =
10−3 (resp. β = 1.5) after 0.3 s for 21 iterations (resp. 9 s for
35 iterations).
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Fig. 3. Estimated distributions from the real data using the
primal-dual optimization algorithm.

5. CONCLUSION

In this paper, we have presented a fast method for the recon-
struction of NMR relaxation time distributions. The main fea-
ture of the algorithm is to use a primal-dual optimization strat-
egy coupled with an iterative minimization in order to jointly
account for the non-negativity constraint and introduce a reg-
ularization term. In the 2D case, the computation cost of the
algorithm is reduced by the introduction of a preconditioned

conjugate gradient and by the design of an efficient precon-
ditioner exploiting the factorized form of the forward model.
Future work will be directed at analyzing the effect of dif-
ferent regularization strategies on the reconstruction perfor-
mances.
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