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ABSTRACT

Consider a financial market participant observing the trade
flow of an asset traded through a limit order book. Trades
are driven by an agent-based model where individual agents
observe the trading decisions of previous agents, as well as
their private signal on the value of the asset and then execute
a trading decision. Given trading decisions of agents, how
can a market observer detect a shock to the underlying value
of the traded asset? The distribution of shock times is as-
sumed to be phase-type distributed to allow for a general set
of change time probabilities beyond geometric change times.
We show that this problem is equivalent to change detection
with social learning. We provide structural results that allow
the optimal detection policy to be characterized by a single
threshold policy.

Index Terms— Computational Finance, Agent-based
Models, Social Learning, Quickest Change Detection

1. INTRODUCTION

Models of agent based computational finance view the mar-
ket through its microstructure as the net effect of interact-
ing and learning (boundedly-rational) agents. Agent based
models (ABMs) have been used to capture empirical stylized
facts observed in markets such as “fat tails”, correlation of re-
turns and volatility clustering which implies long term mem-
ory [1, 2, 3, 4, 5]. A particular area of interest are models of
agents that are performing social learning. In models of so-
cial learning, agents adapt their behavior based on the trading
decisions of previous agents. The study of social learning in
markets have lead to many interesting results such as herding
and trend-following behavior [6, 7, 8, 9, 10].

We consider agents trading in a dealer market with a mo-
nopolist market maker [11, 12, 13]. In this framework we are
interested in studying a market event where a sudden change
in the underlying value of the asset occurs. The aim is to de-
tect the change time with minimal cost. Given local decisions
of trading agents, how can a market observer achieve quickest
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time change detection to determine a shock in the asset value?
Quickest detection is important for market participants to en-
able timely risk management. We will show that the optimal
decision policy has multiple thresholds and the stopping re-
gions are in general non-convex thus making global decisions
(stop or continue) based on local decisions (from social learn-
ing) non-trivial. Problems that deal with the interaction of lo-
cal and global decision makers are of independent interest in
signal processing and multi-agent systems.

2. MULTI-AGENT MODEL AND QUICKEST
DETECTION OF MARKET SHOCKS

We model the market microstructure as a discrete time dealer
market motivated by algorithmic and high-frequency tick-by-
tick trading [14]. There is a single traded asset and a count-
able number of trading agents. Each agent acts once in a pre-
determined sequential order indexed by k. We assume that
the asset has a true underlying value Z which is known to all
traders and the market observers. Once trading progresses,
the market observer does not receive direct information about
Z . It is only able to observe the public buy/sell actions of
agents. Agents receive noisy private observations of the un-
derlying value. At a random time τ0, the asset experiences
a jump change in its value to a new value λZ where λ > 0.
The aim of the market observer is to detect the change time
(global decision) with minimal cost.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private)
observation of agent k and ak ∈ A = {1 (buy order), 2 (no
trade) , 3 (sell order) } denote the local decision agent k takes.
Define the σ-algebras:

Hk := σ-algebra generated by (a1, . . . , ak−1, yk),

Gk := σ-algebra generated by (a1, . . . , ak−1, ak). (1)

The social learning model [15, 8] comprises of the follow-
ing ingredients:

1. Shock in Asset Value: The state variable xk represents
the underlying asset value. At time τ0 the asset experiences
a jump change (shock) in its value due to factors which are
exogenous to the system. We model the change point τ0 by a
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phase type (PH) distribution. PH distributed jump times have
been used as a model for price shocks and credit events such
as corporate default [16, 17]. To construct the PH change
time, assume the underlying state xk evolves as a Markov
chain on the finite state space X = {1, . . . , X}. Here state
‘1’ is an absorbing state and denotes the state after the jump
change. The states 2, . . . , X can be viewed as a single com-
posite state that x resides in before the jump. These states can
also be labelled with the unit indicator vectors e1, e2, . . . , eX .
The initial distribution is π0 = (π0(i), i ∈ X), π0(i) =
P (x0 = i). We are only interested in the case where the
change occurs after a least one time step, so assume π0(1) =
0. The transition probability matrix P is of the form

P =

[

1 0
P (X−1)×1 P̄(X−1)×(X−1)

]

(2)

Let the “change time” τ0 denote the time at which xk enters
the absorbing state 1, i.e., τ0 = inf{k : xk = 1} . It is at this
random time τ0 that the asset experiences a jump change in its
value. To ensure that τ0 is finite, we assume states 2, 3, . . . , X
are transient. In the special case when x is a 2-state Markov
chain, the change time τ0 is geometrically distributed.

The vector g denotes the asset value pre and post jump.
The value associated with state 1 and states 2, . . . , X is g =
(λZ, Z)′, where λ > 0 Recall Z is the true underlying value
of the asset. The constant λ models the relative size of the
jump change in the asset value at time τ0.

2. Agent’s Private Observation: Agent k’s local obser-
vation yk ∈ Y = {1, . . . , Y } is a noisy estimate of the true
value of the asset [13, 18]. The noisy observations are a func-
tion of the underlying asset state and is modeled through the
observation likelihood distribution

Bxy = P (yk = y|xk = x). (3)

The states 2, 3, . . . . , X are fictitious and are defined to gen-
erate the PH-distributed change time τ0. States 2, 3, . . . . , X
are indistinguishable in terms of the observation y, that is,
P (y|2) = P (y|3) = · · · = P (y|X) for all y ∈ Y.

3. Private belief: Using local observation yk, trading
agent k updates its private belief (posterior) πP

k defined as

πP
k = (πP

k (i), i ∈ X), πP
k (i) = P (xk = i|a1, . . . , ak−1, yk)

(4)
initialized by π0. The private belief is the posterior distribu-
tion of the underlying state given the past trading decisions
and current observation [10]. It is computed by agent k ac-
cording to the following Bayesian Hidden Markov Model fil-
ter:

πP
k = T (πk−1, yk), T (π, y) =

ByP
′π

σ(π, y)
, σ(π, y) = 1

′ByP ′π.

(5)

By = diag(B1y, . . . , BXy) (X × X diagonal matrix)

Also πk−1 denotes the public belief available at time k − 1
(defined in Step 6 below). For a PH distributed change time,
the states 2, . . . , X are fictitious, that is B2y = . . . = BXy .

4. Agent’s Trading Decision: Agent k then makes a trad-
ing decision ak ∈ A = { 1 (buy order), 2 (no trade), 3
(sell order) } to minimize its expected trading loss. To for-
mulate this, let c(i, a) denote the non-negative cost incurred
if the agent picks local decision a when the underlying state is
x = i. Denote the local decision X-dimensional cost vector

ca =
[

c(1, a) c(2, a) · · · c(X, a)
]

. (6)

Then agent k chooses local decision ak greedily to min-
imize its expected cost of trading: ak = a(πk−1, yk) =
argmina∈A{c

′
aπ

P
k }. In quickest change detection, since

states 2, 3, . . . , X are indistinguishable in terms of obser-
vation y, we assume that c(2, a) = c(3, a) = · · · = c(X, a)
for each a ∈ A. Based on the posted bid/ask prices, the local
cost vectors ca for action a ∈ {1, 2, 3} are c1 = g− p̄, c2 = 0
and c3 = p−g. Here p and p̄ are the bid and ask price vectors
set by the market maker as described below.

At the beginning, we assume that the bid/ask prices
bracket the intrinsic value, Z ∈ [p, p̄]. Furthermore, we
assume that the jump size is strictly greater than the bid/ask
spread, |1 − λ| > (p̄ − p)/Z . If this condition is violated
then action 2 dominates in all information states. Under these
two assumptions, the costs of one action is dominated by the
other two and can therefore be neglected. In the case where
λ < 1, costs for action 1, c1, are dominated by the cost vector
of actions 2 and 3. In the case where λ < 1, it is action 3
which is dominated. The associated cost matrix restricted to
the two action reduction is sub-modular.

5. Market Making Mechanism: At each time period, the
market maker sets bid and ask prices, θk = (p

k
, p̄k), at which

he will respectively buy and sell one unit of the asset. The
bid/ask prices may be thought of as activation levels for the
agent’s actions. The dealer sets prices based on its belief of
the true value Z . The knowledge of Z is driven only by the
public information available, that is the past actions of agents.
We assume that the market maker earns zero expected profits
and sets prices according to p

k
= E[Z|ak−1 = sell] and

p̄k = E[Z|ak−1 = buy], see [11]. In a special case of change
detection, we assume that the time scale of the price update
by the market maker is much slower than the time scale of
arriving agents. This allows us to consider θ as a constant
over the time horizon of interest to change detection.

6. Social Learning and Public Belief: Agent k’s local de-
cision ak is recorded in the order book and hence broadcast
publicly. Subsequent agents k̄ > k use decision ak to up-
date their public belief of the underlying state xk as follows:
Define the public belief πk as the posterior distribution of the
state x given all local decisions taken up to time k.

πk = E{xk|Gk} = (πk(i), i ∈ X),

πk(i) = P (x = i|a1, . . . ak) (7)
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initialized by π0. Then agents k̄ > k update their public belief
according to the following “social learning Bayesian filter”:

πk = T πk−1(πk−1, ak), where T π(π, a) =
Rπ

aP ′π

σ(π, a)
,

σ(π, a) = 1
′
XRπ

aP ′π (8)

We use the notation T π(·) to point out that the above
Bayesian update map depends explicitly on the belief state
π. This is a key difference compared to the HMM filter (5)
where the Bayesian update map T (·) does not depend explic-
itly on belief state π. In (8), Rπ

a denotes the diagonal matrix
Rπ

a = diag(Rπ
i,a, i ∈ X) where Rπ

i,a = P (ak = a|xk =
i, πk−1 = π) denotes the conditional probability that agent k
chose local decision a given state i. We call Rπ

i,a as the lo-
cal decision likelihood probabilities in analogy to observation
likelihood probabilities Biy (3) in classical filtering.

Clearly, observing the local decision ak taken by agent k
yields information about its local observation yk. The local
decision likelihood probability matrix Rπ in the social learn-
ing Bayesian filter (8) is computed as Rπ = BMπ where

Mπ
y,a

△
= P (a|y, π) =

∏

ã∈A−{a}

I(c′aByP ′π < c′ãByP ′π).

(9)
The main implication of is that the social learning Bayesian
filter (8) is discontinuous in the belief state π, due to the pres-
ence of indicator functions.The likelihood probabilities Rπ

are an explicit function of the belief state π – this is stark con-
trast to the standard quickest detection problems where the
observation distribution is not an explicit function of the pos-
terior distribution. Note that the public belief belongs to the
unit X − 1 dimensional simplex.

2.1. Market Observer’s Detection Strategy

With the above social learning based local decision frame-
work, we turn our attention to the market observer (global de-
cision maker). The market observer seeks to achieve quickest
detection balancing cost of delayed detection while minimiz-
ing false alarms. The detection of change point may signal
an arbitrage opportunity or other trading action to the mar-
ket observer. The formulation presented considers a general
parameterization of the costs associated with detection delay
and false alarms. The specific costs based on a particular the
course of action to be taken by the global decision maker are
not considered.

At each time k, given the public belief πk , let uk denote
the decision made by the market observer: uk = µ(πk) which
may be either 1) announce change and stop or 2) continue.
Thus the global decision uk is Gk measurable, where Gk is
defined in (1). The policy µ belongs to the class of stationary
decision policies denoted µ. Below we formulate the costs
incurred when taking these global decisions uk.

(i) Cost of announcing change and stopping: If global de-
cision uk = 1 is chosen, then the social learning protocol ter-
minates. The false alarm event ∪i≥2{xk = i} ∩ {uk = 1} =
{xk 6= 1} ∩ {uk = 1} represents the event that a change is
announced before the change happens at time τ0. To evalu-
ate the false alarm penalty, let fiI(xk = i, uk = 1) denote
the cost of a false alarm in state i, i ∈ X, where fi ≥ 0. Of
course, f1 = 0 since a false alarm is only incurred if the stop
action is picked in states 2, . . . , X . The expected false alarm
penalty is

C̄(πk, uk = 1) =
∑

i∈X

fiE{I(xk = i, uk = 1)|Gk} = f
′πk,

(10)
where f = (f1, . . . , fX)′, f1 = 0. The false alarm vector f

is chosen with increasing elements so that states further from
state 1 incur larger penalties.

(ii) Delay cost of continuing: If global decision uk = 2 is
taken then the social learning protocol continues to time k+1
and a delay cost is incurred. The expected delay cost is

C̄(πk, uk = 2) = d E{I(xk = 1, uk = 2)|Gk} = de′1πk

(11)
where d > 0 denotes the delay cost.

2.2. Quickest Time Detection Objective

For any π0 ∈ Π(X), and policy µ ∈ µ, there exists a (unique)
probability measure P

µ
π0

on (Ω,F) [19]. Let E
µ
π0

denote the
expectation with respect to the measure P

µ
π0

.
Let τ denote a stopping time adapted to the sequence of

σ-algebras Gk, k ≥ 1. With decision policy uk τ = inf{k :
uk = 1}. For each initial distribution π0 ∈ Π(X), and policy
µ, the following cost is associated:

Jµ(π0) = E
µ
π0
{

τ−1
∑

k=1

ρk−1C̄(πk, uk = 2)

+ ρτ−1C̄(πτ , uτ = 1)}. (12)

Here ρ ∈ [0, 1] denotes a discount factor. Since C̄(π, 1),
C̄(π, 2) are non-negative and bounded for all π ∈ Π(X),
stopping is guaranteed in finite time.

The goal of the global decision maker is to determine the
change time τ0 with minimal cost, that is, compute the opti-
mal global decision policy µ∗ ∈ µ to minimize (12), where
Jµ∗(π0) = infµ∈µ Jµ(π0).

2.3. Market Observer’s Optimal Strategy

The optimal stationary policy µ∗ : Π(X) → {1, 2}, and as-
sociated value function V̄ (π), are the solution of “Bellman’s
dynamic programming equation”: Jµ∗(π0) = V̄ (π0)

µ∗(π) = argmin{C̄(π, 1), C̄(π, 2) (13)

+ ρ
∑

a∈A

V̄ (T π(π, a))σ(π, a)}
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with the value function V̄ (π) defined by the associated mini-
mization.

Define, C = de1 − (I − ρP )f , with elements denoted
as Cj , j = 1, . . . , X . Let Ql, l = 1, . . . , 2Y , denote the
elements of the power set of Y (excluding, of course, the
empty set). Define the following 2Y convex polytopes P̄l,
l = 1, 2, . . . , 2Y :

P̄l =

{

π ∈ Π(X) :

{

(c1 − c2)
′ByP ′π < 0 y ∈ Ql

(c1 − c2)
′ByP ′π ≥ 0 y ∈ Y −Ql

}

(14)
Although in general there are 2Y possible Rπ matrices, we
now show that by introducing assumptions (A1), (A2) and (S)
below, there are only Y + 1 distinct local decision likelihood
matrices Rπ. This forms an important preliminary step for
characterizing the optimal global decision policy. We list the
following assumptions.
(A1) The observation distribution Bxy = p(y|x) is TP2 i.e.,

all second order minors of matrix B are non-negative
[20].

(A2) The transition probability matrix P is TP2.
(A3) The elements of vector C are decreasing.

(S) The local decision cost vector ca in (6) is submodular.

Theorem 1 Under (A1), (A2), (S), the belief state space
Π(X) can be partitioned into at most Y + 1 non-empty
polytopes denoted P1, . . . ,PY +1 where

P1 = {π ∈ Π(X) : (c1 − c2)
′B1P

′π ≥ 0} (15)

Pl = {π ∈ Π(X) : (c1 − c2)
′Bl−1P

′π < 0 (16)

∩ (c1 − c2)
′BlP

′π ≥ 0}, l = 2, . . . , Y

PY +1 = {π ∈ Π(X) : (c1 − c2)
′BY P ′π < 0}

On each such polytope, the local decision likelihood matrix
Rπ is a constant with respect to belief state π. �

The proof of the above theorem is in [21]. As a consequence
of Theorem 1, there are only Y + 1 possible decision likeli-
hood matrices Rπ, one per polytope Pl, l = 1, . . . , Y + 1.

3. NUMERICAL RESULTS

In this section we provide numerical results to demonstrate
the results presented. We consider geometrically and phase
type distributed change times. In this example, the underly-
ing price starts at Z = 2 and at a random time the value drops
to Z = 1. The following parameters were used in the simula-
tion; geometrically distributed change time, p = .99, p = 1.5,
p̄ = 2.1, quantized Gaussian observation noise with standard-
deviation Σ = 1, f = 0.25, d = 0.1 and ρ = 0.75. Figure
1(a) shows optimal policy. Note the multiple switching be-
havior of the optimal policy. Figure 1(b) shows the associated
value function V̄ .
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Fig. 1. (a) Optimal decision policy µ∗(π) for social learn-
ing based quickest time change detection for geometric dis-
tributed change time. (b)Value function V̄ (π) is non-concave
and discontinuous.
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Fig. 2. Optimal Decision Policy under fixed bid/ask prices
under phase-type distributed change time.

In Figure 2 we illustrate the optimal detection policy for
a phase distributed change time. All parameters remain un-
changed except for the transition matrix P̄(2×2) = [p, 0; 1 −
p, p]. The plot shows the Euclidean projection of the polytope.
The axes represent belief state components π(1) and π(2).
The boundaries of the convex polytopes Pl (1) are shown, de-
noted by the hyperplanes η, as well as the cost hyperplane C.
Once again, note the multiple threshold nature of the optimal
policy.

4. RELATION TO PRIOR WORK

In this work, we seek to characterize optimal trading sig-
nal detection in multi-agent models with social learning
through stochastic control techniques. Previous work has
concentrated on empirical results of multi-agent simulations
[1, 3, 4] and market making in ABMs [11, 13]. This work
is a novel application of multi-agent signal processing and
control methods to the problem of change detection in dy-
namical models affected by social learning. The proof of the
structure of the market maker’s optimal strategy involves sub-
modularity on the lattice of posterior Bayesian distributions,
see [22, 21].
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