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ABSTRACT

Characterization of joint dynamics of multivariate financial
time series calls for the analysis based on joint intrinsic tem-
poral and information-theoretic scales. Yet a rigorous account
of dynamical complexity of such time series is hampered by
the univariate natures and mathematical artefacts associated
with the existing methods. To that end, we employ multi-
variate multiscale entropy (MMSE) in order to associate mul-
tivariate complexity with long-range correlations, direct and
indirect couplings, and synchronies among the data channels.
Simulations on major stock indices support the approach.

Index Terms— Dynamical complexity, long term corre-
lation, multivariate entropy, market efficiency, Hurst exponent

1. INTRODUCTION
Financial indices of the same kind tend to exhibit coupled dy-
namical behaviour, yet the most intricate properties and de-
scriptors, such as the Hurst exponent, long term correlation,
irregularity and entropy are typically evaluated in an index-
by-index manner, over multiple univariate series within a par-
ticular portfolio [1, 2]. While linear stochastic models, such
as the autoregressive moving average (ARMA), and the links
with chaos and fractals, are traditionally the first step in the
analysis of both univariate and multivariate financial indices,
model based methods which operate on a single scale are not
likely to explain complex patterns of evolution or direct and
indirect causalities [3, 4].

Nonlinear time series analysis methods are well suited to
finding hidden patterns in time series, together with various
latencies, periodicities and fractal behaviour. However, they
also typically operate on a single scale and tend to be univari-
ate [5]. More recently, surrogate data methods in conjunction
with various test statistics have been used to assess the degree
of nonlinearity or uncertainty in time series. These methods
also operate only on stationary data and would hence mistake
nonstationarity for nonlinearity [5, 6]. One such approach is
the delay vector variance (DVV) method [7,8], which is based
on local predictability in phase space and has been shown to
robustly quantify the degree of nonlinearity and uncertainty
in time series. It has also been successfully applied to econo-
metric time series, specifically in the context of business cycle
modelling [9].

Figure 1 illustrates models spanned by the properties of
stochasticity, determinism, linearity, and nonlinearity (mod-
ified from [5]). Observe that the most frequently used and
mathematically tractable (i) linear stochastic models (ARMA)
and (ii) nonlinear ARMA models (e.g. neural networks), are
diametrally opposite from (iii) nonlinear deterministic chaotic
models. Yet most real world signals occupy the areas denoted
by ‘a’,’b’,’c’, and ’?’, for which models (i)-(iii) are inade-
quate as they assume rigid structure in data.
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Fig. 1: Standard data analysis models and their limitations

Finding inherent structure in time series is closely related
to complexity science and is typically based on delay vec-
tor (time-delay embedded) reconstruction [5, 10] which lends
itself to phase space representation and allows for the estima-
tion of dynamical characteristics including attractor dimen-
sions, Lyapunov exponents and entropy measures [5]. While
there is a lack in consistency within the field of complexity
science on its exact definition, a common consensus is that a
signal is considered dynamically complex when it spans the
whole range between randomness and periodicity [11, 12].

This work employs some recently developed multivariate
entropy-based techniques to quantify dynamical complexity
of multichannel financial data. Our approach is based on
the multivariate multiscale entropy (MMSE) method [13,14],
which evaluates the conditional probability that similar delay
vectors remain close to one another (within a threshold ex-
pressed in a certain metric) after increasing the dimension in
the state space. The multivariate sample entropy estimate is
then evaluated over multiple time scales, thus reflecting the
underlying multivariate dynamical complexity. The useful-
ness and enhanced insight offered by such an approach is il-
lustrated on several stocks analyzed over periods of different
geopolitical and socio-economics conditions.
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2. PRACTICAL COMPLEXITY ESTIMATORS

Standard complexity estimators operate on a single scale (di-
rectly on sampled data) and relate complexity to the degree
of randomness. These complexity estimators typically use
entropy as a basis for the complexity metric, for instance,
approximate entropy (ApEn) [15] and sample entropy (Sam-
pEn) [16]. In this sense, the higher the entropy the more
dynamically complex the signal at hand, as illustrated in the
Type 1 measure graph in Figure 2(a).
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Fig. 2: The need for multiscale complexity measures

However, this is counterintuitive, as that would mean that
the randomized (or surrogate) data would have higher com-
plexity than the original time series, which may exhibit long
range correlations and couplings - signatures of complexity.
Therefore, truly complex signals are neither completely ran-
dom nor deterministic, and exhibit rich dynamical properties
over intrinsic spatio-temporal scales - physically meaningful
complexity measures should therefore be of Type 2 in Figure
2(a). The recent univariate multiscale entropy (MSE) [17]
circumvents the misleading results of the standard measures
by evaluating the sample entropy across multiple time scales,
and offers a physically meaningful interpretation (Fig 2(b)):

• A deterministic signal has low complexity and will
have low entropy across all the scales;

• A random signal has highest entropy for scale 1, but its
entropy will rapidly decrease with scale, as such signals
have no structure;

• A truly complex signal (e.g. 1/f noise) has lower en-
tropy than random signal for scale 1, but will maintain
its entropy values along the increasing time scales.

One limitation of the MSE measure is its inability to process
multivariate time series, thus restricting the complexity anal-
ysis of multiple data channels to a channel-wise approach,
which does not consider couplings, long term correlation and
causality. In view of this shortcoming, the multivariate multi-
scale entropy (MMSE) [13] measure expands on the concepts
underpinning the MSE and the multivariate sample entropy
(MSampEn) [13] measures, to provide a rigorous analysis
of multivariate complexity, thus accounting for within- and
cross-channel correlations, and direct and indirect couplings.

3. MULTIVARIATE MULTISCALE ENTROPY

To evaluate the dynamical complexity of multivariate time se-
ries, we first need to estimate the joint probability function
from the data, as a basis for multivariate entropy calculation.
The first multivariate sample entropy approach was recently
introduced in [13, 18], and is outlined below.

3.1. Multivariate Sample Entropy (MSampEn)

By time-delay embedded reconstruction [5], the composite
delay vector is given by:

Xm(i) =


X1,i, X1,i+τ1 , . . . , X1,i+(M1−1)τ1

X2,i, X2,i+τ2 , . . . , X1,i+(M2−1)τ2
...

Xc,i, Xc,i+τc , . . . , Xc,i+(Mc−1)τc

 (1)

where M = [m1,m2, . . . ,mc] denotes the multidimensional
embedding vector and τ = [τ1, τ2, . . . , τc] the time delay vec-
tor of the composite delay vector containing c data channels.
The parameters mi and τi are the channel-wise embedding
dimension and time delay, and can be found jointly [19].
The MSampEn multivariate entropy estimator [13] runs as:

1. Define n = max(M) ∗ max(τ) and construct (N −
n) composite delay vectors Xm(i) ∈ Rc for i =
1, 2, . . . , N − n.

2. Find the maximum norm between all delay vectors
d[XM (i), XM (j)] = maxk=1,...,m{|xi(k)− xj(k)|}.

3. For each of the composite delay vectors within the set,
count the number of delay vectors that are within a tol-
erance r. Denote this count as a probability given by
Pmi = 1

N−n−1 ∗count{d[XM (i), XM (j)] ≤ r}, i 6= j.
Repeat for every composite delay vector and average
the probability to obtain P1 = 1

N−n ∗
∑N−n
i=1 Pmi .

4. Increase the embedding dimension from m to (m+ 1)
in as many ways as there are data channels, c. Construct
the composite delay vectors for each of the c possible
(m+1) embedding dimensions to yield c(N−n) com-
posite delay vectors. Repeat Step 3 to arrive at proba-
bility P2 = 1

c(N−n) ∗
∑c(N−n)
i=1 Pm+1

i .

5. The MSampEn is: MSampEn(M, τ, r,N) = −lnP2

P1
.

This extension of sample entropy to the multivariate case re-
quires some careful considerations [13]:
• To avoid any bias towards data channels of larger am-

plitudes, amplitude scaling to within (0, 1) is used.
• The probability for the (m+1)-dimensional case is cal-

culated in a rigorous way across all subspaces so as to
account for the correlations across data channels.
• The variance of each data channel is normalized to

unity, and the embedding dimensions and time de-
lays must be large enough so that the results are not
governed by noise.
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4. MULTIVARIATE DYNAMICAL COMPLEXITY

The multivariate MSE measure (MMSE) [13, 18] evaluates
MSampEn along multiple temporal scales defined through the
so-called coarse graining process:

1. For a user-defined range of temporal scale factors ε,
perform the coarse-graining process for each channel of
the multivariate time series {xk,i} where k = 1 . . . , c
and i = 1, . . . , N for each scale factor ε, by averaging
over the scale factor ε, as

xε
coarsek,j

=
1

ε

j∗ε∑
i=(j−1)∗ε+1

xk,i, (2)

for k = 1, . . . , c and 1 ≤ j ≤ N
ε to produce the coarse-

grained time series.
2. Compute the MSampEn as in Section 3.1 for each

coarse-grained multivariate time series and plot such
multiscale MSampEn against the scale factors ε.

4.1. Physical Interpretation of MMSE Plot

The complexity of the multivariate time series is interpreted
in the following way [13]:
• A multivariate time series whose MMSE plot has

higher values for larger scales than MMSE of another
multivariate time series, is more dynamically complex.

• A multivariate time series whose MMSE plot exhibits a
monotonically decreasing behaviour with scale factors
contains useful information only at small scales - this is
either purely stochastic or deterministic time series.

• A multivariate time series whose MMSE plot is either
monotonically increasing or constant with an increase
in the scale factor exhibits long-term correlation struc-
tures (direct or indirect), a signature of dynamically
complex time series.

Figure 3 illustrates the concept of multivariate complexity
on trivariate data composed of correlated and uncorrelated
white (low complexity) and 1/f (high complexity) noises.
In Fig 3(a), observe that MMSE values increased at higher
scales with an increase in the number of 1/f noise channels.
As expected, for scale 1 (ε = 1) the entropy of the trivari-
ate purely white signal was highest, and it decreased rapidly
with the scale index. On the contrary, the complexity of the
trivariate 1/f noise was at its lowest for scale 1, but main-
tained its value with an increase in scale factor, indicating a
truly complex signal. Figure 3(b) shows that structural com-
plexity manifests itself in both within-channel correlation (as
shown in Figure 3(a)), and also in across-channel correlation
and coupling. Observe that the the complexity of both the
white and 1/f channels were higher when the data channels
were correlated, conforming with the physics, and that (as
expected) the uncorrelated trivariate white signal had lowest
complexity, while the correlated 1/f signal had highest com-
plexity.
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Fig. 3: MMSE plot for multivariate white and 1/f channels.

5. MULTIVARIATE COMPLEXITY IN FINANCE

A macro-approach to complexity analysis was employed by
using major stock indices as the multivariate time series con-
sidered. The motivation was that while stock indices may
have their shortcomings when used as benchmarks, major in-
dices are widely accepted as accurate indicators of the finan-
cial health of the sectors they represent [20], and to some ex-
tent even the world economy. In addition, key events affecting
the global economy are well understood and known. With this
in mind, we analyzed the following four major stock indices
benchmarking the economy of the United States of America:
1. Dow Jones Industrial Average, 2. NASDAQ Composite, 3.
Standard & Poor’s 500, 4. Russell 2000.

Based on our interpretation of key geopolitical and socio-
economic events that affected the U.S. and world economy at
large, financial data between 01/01/1991 to 31/12/2011 were
segmented into the following four periods:

P1 from 01/01/1991 to 31/12/1999, we witnessed eco-
nomic boom and exceptional levels of growth in the
markets which were buoyed by optimism in technolog-
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ical developments, hence the term “dot-com boom”.
P2 from 01/01/2000 to 31/12/2003, is characterised by un-

certainty and high volatility, culminating in one of the
biggest financial meltdowns since the Great Depres-
sion. The financial crisis was further compounded by
the 9/11 terrorist attacks and its aftermaths.

P3 from 01/01/2004 to 31/12/2007, is a period of recovery
where the renewed enthusiasm amongst investors saw
huge investment opportunities in undervalued stocks,
which aided market recovery.

P4 from 01/01/2008 to 31/12/2011, is characterized by
bursting of the sub-prime mortgage bubble and debt
crisis, which plunged the world economy into a deep
recession which still has lingering effects today.

In the simulations, the closing prices of the four indices were
taken as a quadrivariate time series in the MMSE analysis,
with the parameters ε = 1, . . . , 10,M = [3, 3, 3, 3] and τ =
[1, 1, 1, 1], giving the MMSE plot in Figure 4. Observe
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Fig. 4: Complexity of quadrivariate financial time series.

that the quadrivariate financial time series in all the four pe-
riods maintained constant trends across the temporal scale
factors ε. This suggests that all the financial time series ex-
hibit long-range correlation and are dynamically complex -
this is intuitive as it is not expected that financial time series
are purely random/deterministic in nature. The results also
suggest higher complexity during periods of uncertainty and
high volatility, as compared to periods of relative stability and
growth. The long-range correlation in the financial indices
considered are also confirmed through the Hurst exponent,
H , a widely used tool for evaluating long-range correlation
in a time series. Table 1 shows the results using the Rescaled
Range (R/S) method [21], whereby a Hurst exponent value
in the range of 0.5 < H < 1 indicates that the time series
under study possesses a long-range positive autocorrelation
structure while a value in the range of 0 < H < 0.5 indi-
cates a long-term negative autocorrelation structure. Observe
that every segment of the financial data in Table 1 exhibited
long-range positive autocorrelation structure, whose values
are consistent with the complexity results obtained from the
MMSE analysis in Figure 4.

Table 1: Hurst Exponent Estimates by R/S Method

Period DJIA NASDAQ S&P500 RUSSELL2000
1 1.0087 1.0015 0.98636 1.0018
2 0.90905 0.96882 0.97016 0.94115
3 0.99256 0.97731 0.97348 0.97529
4 0.98167 0.96966 0.99667 0.97101

Tracking complexity. The MMSE measure was next applied
to quadrivariate log-prices through the highly volatile period
at the turn of the millenium. The tile diagram in Fig. 5 indi-
cates that the MMSE evaluated over 4-year sliding windows
captured a trend in the degree of complexity, which increased
from the low 1991-1994 level to peak at around 1999-2002,
followed by a decrease to the low 2002-2005 level.
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Fig. 5: Complexity of quadrivariate log-prices from 1991–2005.

5.1. Physical Interpretation
The MMSE analysis is in line with our intuition – since the
prices reflect changing market conditions, higher complexity
is observed during periods of uncertainty and high volatility,
where events and shocks cause irregular shifts. Conversely,
during periods of financial stability, index prices follow well-
studied business cycles and exhibit more regularity and lower
complexity. Therefore, complexity measures may act as a
proxy for the volatility levels within the markets. A compari-
son of the results in Figure 5 with the S&P500 volatility index
(VIX) shows similar trends during the period under study.

6. CONCLUSION

We have investigated the usefulness of multivariate dynam-
ical complexity in the characterisation of coupled financial
indices. The analysis conducted on selected financial time
series has showed the changes in complexity for different pe-
riods of financial outlook. We have also established a link be-
tween the measure of dynamical complexity and the volatility
within the markets. This is supported by both economic intu-
ition and evidence from past economic cycles.
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